The Impact of Network Architecture in Cluster
Parallel Algorithms Design: Matrix
Multiplication on Infiniband

Gustavo Wolfmann* Fernando G. Tinetti**

Lab. de Computacion - Universidad Nacional de Cérdoba
Av. Velez Sarsfield 1611, 5000, Cérdoba, Argentina, gwolfmann@gmail.com

III-LIDI - Universidad Nacional de La Plata
50 y 120, 1900, La Plata, Argentina, fernando@info.unlp.edu.ar

Abstract. Ethernet has been a standard technology used for cluster in-
terconnection, which is based on a shared bus. This technology impacts
in some way the kind of messages used for parallel algorithms optimiza-
tion on clusters: point to point messages are only used when necessary
since collectives communications (broadcasts, more specifically) are more
efficient. The emergence of Infiniband as network technology for intercon-
necting nodes provides better bandwidth and, also, changes the topology
of the network: it is based on serial point to point links connecting nodes.
Thus, algorithms can use point to point messages without penalizing effi-
ciency. Furthermore, point to point links suggest changes in the schedul-
ing of the parallel tasks for parallel performance optimization. This paper
shows of experiments measuring two matrix multiplication algorithms,
one using broadcast communications and another using point to point
communications, both running over the two kind of networks and the
impact on the scheduling policies.

1 Introduction

Interconnection network technology has been focused on performance since many
years ago, and has introduced strong changes compared to the standard Ethernet
interconnection network. In some way, Ethernet has survived in the clusters high
performance arena due to low cost and extensively used layer 2 switching devices.
Infiniband is one of the relatively new interconnection networks, on which the ba-
sic hardware architecture is serial point to point instead of the classical Ethernet
shared bus [12]. Given the focus on optimization in high performance computing,
the underlying interconnection network necessarily has some impact on parallel
algorithms design. More specifically, clusters are made up of high performance
desktop computers interconnected by a high performance local area network and
parallel algorithms tend to take advantage of available computing power as well

* Becario Universidad Nacional de Cérdoba
** Investigador Comisién de Investigaciones Cientificas de la Provincia de Buenos Aires

as avoiding performance penalties of communication architecture. And parallel
algorithm design is influenced by both of this performance oriented guidelines.

Ethernet interconnection networks are currently widely spread out on clus-
ters used for parallel computing. This interconnection technology in some way
induces the broadcast communications, since it is expected a priori that broad-
cast communications have the best implementation (from the point of view of
performance). On another hand, Infiniband necessarily induces point to point
communications, since the interconnection technology is based on point to point
physical links. Also, broadcast communications are expected to be penalized on
Infiniband from the point of view of performance. This paper is focused on ana-
lyzing the parallel algorithms efficiency on clusters, where parallel algorithms can
be based either on broadcast or point to point communications. T'wo clusters are
used for relative performance comparison: an Ethernet cluster and an Infiniband
cluster. MPI (Message Passing Interface) is used for algorithm implementation,
given its wide acceptance in the parallel high performance community on dis-
tributed memory parallel architectures [13]. The matrix multiplication problem
will be used as representative of the linear algebra applications, since it has
strong and well defined computing requirements and, also, provides a fair and
well known problem for performance comparison [14].

In general, algorithms performance will be analyzed from the point of view
of the communication as well as computing patterns. Broadcast communica-
tions lead to a pattern where every process computes on local/owned data and
“shared” or “common” data (sent/received via a broadcast message). On point
to point based algorithms there is no idea of shared or common data, since each
process computes on local data in the sense that is not shared with any other
process at computing time, besides, it can be possibly received from a prede-
fined and well known set of neighbors. The “wavefront pattern” [3], is a parallel
programming pattern where data is disposed in a logical plane or space, and the
computations start at an edge and advance in diagonal to the opposite edge like
a wave and is the theoretical context used for the point to point algorithm im-
plementation. The hypothesis in this paper is such that the processing sequence
has to be taken into account with point to point communications. Also, the pro-
cessing sequence will be defined in terms of application specific data dependence
as well as computing dependency defined by the communication pattern, i.e. the
data arriving from the process neighbors.

The rest of the paper is organized as follows: cluster configuration and algo-
rithms are presented in the next section. The section 3 expose the results of the
experiments. Related work and conclusions are the last sections.

2 Clusters and Algorithms

Cluster hardware presented in this section is relatively well known in general,
and can be considered standard in the context of high performance computing.
The cluster specification is given here just to provide the context on which the
algorithms will be analyzed. However, the algorithms are not dependent on the

cluster hardware, they are just focused on performance optimization on each
kind of clusters interconnection network, using either broadcast or point to point
communications.

2.1 Experiments Environment

The cluster used for the experiments is made up of four SMP (Symmetric Multi-
processing Systems), two of them are dual processor with Intel Xeon 5420 quad-
core processors and eight gigabytes RAM, and the remaining two are dual pro-
cessor with AMD Opteron 2200 dual-core processors and four gigabytes RAM.
Two networks interconnect the nodes: 1 Gb/s Ethernet and 20 Gb/s Infiniband
(Flextronics switch and Mellanox MHGS18-XTC 4x interfaces).

All computers in the cluster run the Centos 5.3 operating system. Infiniband
library installed is Mellanox Open Fabric Enterprise Distribution 1.4 for linux
[15], and Sun’s cluster tools 8.1 [16] provides the MPI implementation. Programs
are implemented in Fortran and compiled with Sun Studio Express [17], using
Sun Sunperf library, which includes the BLAS (Basic Linear Algebra Subrou-
tines) implementation from which the optimized matrix multiplication is used.
OpenMP directives are used to take advantage of multiprocessing on each com-
puter. More specifically, four threads are used on every computer in order to
use the four cores available in the AMD based computers and four of the eight
available in the Intel based computers. In this paper, as a first approach, the
cluster will be used as a homogeneous cluster, i.e. as a cluster with four dual
processor cluster, in which each processor is dual core, thus obtaining a total
of 16 cores in the cluster. Issues such as heterogeneous computing power and
workload balance will be out of the scope of this paper.

2.2 Algorithm Based on Broadcast Communications

A broadcast based parallel matrix multiplication algorithm was used in previous
works [1] obtaining a speedup near the optimum one on clusters of multicore
nodes. We have tested that multicore power is well exploited by the BLAS li-
braries used (Sun’s sunperfect library), by only setting the number of threads,
thus the accent is put on the distribution part of the algorithm. The algorithm is
schematically described in Fig. 1 for four computers processing C' = A x B, where
matrices A and C are distributed by row blocks and matrix B is distributed by
column blocks. Thus, every node in the cluster has a subset of A and C row
blocks, and a subset of B column blocks as shown in Fig. 1-a). There are as
many A, B, and C blocks as computers in the cluster. The algorithm follows
a well defined sequence of B block broadcasts, Bi, and C' partial computing on
each node as shown in Fig. 1-b).

2.3 Algorithm Based on Point to Point Communications

Data distribution is similar to the previous one given that matrices A and C are
also distributed by row blocks and B is distributed by column blocks. However,

[Comp1] [Comp2] [Comp3] [Comp4]

C = A X B

a) Matrix Distribution in each computer

Comp.first Comp.second
Bcast B1|—| quarter of C Bcast B2 — | quarter of C
[Boast B1] > auarter of ne ||
Comp.third Comp.fourth
Bcast B3|—®»| quarter of C Bcast B4 —»| quarter of C
in Comp; in Comp;

b) Broadcast and computation order

Fig. 1. Broadcast Based Matrix Multiplication Algorithm.

it is expected that the number of blocks per process is more than one, and block
cyclic distribution is used as shown in Fig. 2-a) for 4 processes and 2 blocks
per process. The number of blocks per process is a performance determined
parameter, the natural starting value would be 2 (i.e. two blocks per process).
Computing is determined in terms of the square blocks computed from each
A; and Bj blocks, i.e. C;; = A; * Bj on each process, which has only the A;
blocks and needs to receive most of the B; blocks from other process. Blocks
C;,; are computed in “waves” as shown in Fig. 2-b) which defines a sequence of
computing and, also, the corresponding send-receive messages, as defined in the
wavefront pattern [2], where the computing advances from the upper left corner
to the lower right corner according the pattern data distribution.

The sequence shown in Fig. 2-b) is given in terms of wave, from 0 to 14 for
A and C' matrices divided in 8 row blocks and B matrix divided in 8 column
blocks, which determines the 8 x 8 C;; blocks shown in the figure. Headings
in Fig. 2-b) show the processes containing the data needed for computing each
C;; block, and blocks in the same wave can be computed in parallel if they
belong to different processes. There are 4 blocks being computed in parallel in
most of the waves, i.e. in those waves containing 4 or more blocks. In the first
wave (wave 0), Cp o is computed in process 0 with local data. In the next step
(wave 1) processes 0 and 1 compute Cpy; and Cy o respectively. Block By has
to be sent from process 1 to process 0 and block By from process 0 to process
1. Next computing waves are similar, every processor related to the wave: a)
send and receive B blocks involved in the corresponding C; ;, and b) the C; ;
are effectively computed in parallel.

Comﬁo Com;_g1 Com[jZ Com§3
C = A x B

a) Matrix Distribution in each computer b) Computation progress

Fig. 2. Wavefront Parallel Pattern

3 Experiments and Results

In the implementation of the above wavefront pattern, non-blocking messages
were used in the sequence send-receive-wait until received-compute, allowing to
ovelap computing and communications. Table 1 shows the execution time for
the broadcast and point to point algorithms, over Ethernet and Infiniband.

Table 1. Experimental Results Over Ethernet and Infiniband

Matrix|PtP Eth|Bcast Eth|PtP/Bcast|PtP Inf|Bcast Inf|PtP/Bcast
Size | (secs.) (secs.) Eth (secs.) | (secs.) Inf
2000 0.886 0.610 1.452 0.691 0.628 1.100
4000 3.090 2.310 1.338 2.483 2.022 1.223
8000 17.204 12.647 1.360 14.378 11.271 1.276
12000 | 56.186 39.219 1.433 45.145 36.088 1.251

The point to point algorithm implies a performance penalty from 30% to 45%
over the broadcast algorithm when the computers are interconnected by Ether-
net. When the computers are interconnected by Infiniband, the performance
penalty for the point to point algorithm is about 25%.

To see graphically the behavior of the messages in both algorithms, we use
a tool for profiling and tracing MPI applications, Sun’s analizer [18], that shows
the trace of MPI messages. Fig. 3 shows a graphical sample for the broadcast
algorithm and Fig. 4 shows a graphical sample for the point to point algorithm.
Each row in the figures represent one of the four MPI processes, white (lighter)
areas represent computing times of the application and light blue (darker) areas
represent the time of the MPI routines. In both cases, the first two rows corre-

spond to Xeon based computers and the last two to Opteron based computers.
The timing behavior is about the same in all the matrix sizes experimented.

ST St B AN 2T | Fest 8 bren]

Eile View Timelie Help

EDoB 8aasbDs BTe Fing | Text: — >
MPIChart | Functions | Source Timetine | 1 4
sbsolute Timeed 1 2 E 4 5 7

\spplication Application MPI_Finalize

P1 Application Application Application

Falun wAppliatiu Appliativn Apliatiun

PAlunibApplicatio Application spplication

Relative

Find | Text: =] &
MPI Chart | Functions | Callers-Callees | Source | Disassembly | Timeline | Experiments |
Absolute Timetsec z 3 a s 5 7 s 3 10 11

U=

oM BaplicaAppihs & |Apphta(iur|p_ & A Applicatio

] f | . .
wapplidapplica gl Rl anpiitario A

beppfapplitatio aalel \H"- e ~pplicaMPI_F

A

Application WpplkAappiApplication T

Applica MBI

P3| Mapplid A Lapplicatio

Batative Timatcart

Fig. 4. MPI Timing of Point to Point Wavefront Algorithm Over Infiniband

In the first case, Fig. 3, it can be seen that the MPI broadcast routine takes
long times in waiting the message finalization and synchronizing all processes.
This fact is one of the motivations of this work: to make a better use of the
communication time. The wavefront pattern implementation is shown in Fig. 4,

with many more but small light blue areas representing the communication time.
The black lines between processes in Fig. 4 represent synchronizations. All the
messages in the experiment are the same size, so the difference in the time among
two messages, beyond a logical small difference are due to synchronization.

The wavefront parallel pattern acts like a pipeline [2] in the sense that both
share the concepts of filling up and emptying the pipe. This behavior is exposed
in the figure 4, but there are some other delay in the middle of the processing.
What is the origin of these delays? The answer can be found by analyzing the
sequence of the C; ; computing in each process.

Table 2 presents by column the message calls (send/receive) done by process.
Each number in the body represents the processor that send / receive the message
to / from the processor at the heading column, and the subindex represents the
wave number in the wavefront sequence according to Fig. 2-b). For wave 0,

Table 2. Beginning of the sequence of calls in each processor

Processor 0 Processor 1 Processor 2 Processor 3

Sender|Receiver||Sender|Receiver||Sender|Receiver||Sender|Receiver
0 | 0o E E E E E
1 1; 01 01 - _ _
2 29 12 12 02 02 - -
33 33 23 23 13 13 03 03
oV | oM 34 34 % 2 14 1y

0 | o - - - - -
1;3) 1;4) 0;4) 0;3) 35 35 25 25
125) 126) 026) 025) _ _ _ _
2é7) 2é8) 1((;9) 1((;9) Oég) O((;) 3((;10) 36(310)
22511) 22512) 1%13) 1%13) 0212) Oén) B B
3$14) 3$15) 2 2 1, 1, 0(715) 0(714)
37 37 27 27 17 17 07 07

(1) for C4,0; and (2) for Co 4 computed on wave 4

(3) for C5,0; and (4) for C4,1 computed on wave 5

(5) for Ci,4; and (6) for Co,5 computed on wave 5

(7) for Cs,0; and (8) for Cy4,2 computed on wave 6

(9) for C5,1; and (10) for Cs3; computed on wave 6

(11) for C,4; and (12) for Co,6 computed on wave 6

(13) for C4,5 computed on wave 6

(14) for C7,0; and (15) for C4,3 computed on wave 7

process 0 is shown as sending to and receiving from himself, but cases in which
sender and receiver are the same are treated specially to gain efficiency. For wave
1, process 0 send to and receive from process 1, and for wave 3 process 0 send to
and receive from processor 2. In the meanwhile, process 3 is waiting that process
0 ends all the send / receive / compute previous to wave 3 in the wavefront in

order to start working. This delay can be interpreted as a pipeline filling delay.
The next time process 3 exchanges data (send - receive) with process 0 is at
wave 7, but until that, process 0 has to complete six C;; blocks and process
3 only three of them, generating another delay, in this case explicitly due to
the wavefront pattern. Theses delays can be explained as computing dependency
as oposed to data dependency, because they arise from the compute processing
order.

An implementation technique is used for avoiding the delays implied by the
wavefront pattern whitout changing the C;; processing order. The basis for
delay avoidance is to increase the number of non blocking send / receive calls in
each computer. This was implemented by launching in each node a pair of non
blocking send - receive for each of the other nodes in the cluster, and taking into
account the tags launched and pending to be completed. With this new outline
of data communications, the computing dependency delays are removed because
more than one processor has pending communications, allowing to complete
some of them while the others are awaiting. Table 3 exposes the times obtained
in this variant, over Infiniband, for the point to point algorithm and compared
with broadcast implementation. It can be seen that times are about the same
for both algorithms, with some cases in which point to point is better.

Table 3. Execution times of both algorithms over Infiniband

Matrix |(PtP In-|Broadcast |PtP/Bcast.

Size finiband Infiniband |Infiniband
(secs.) (secs.)

2000 0.584 0.625 0.934

4000 1.993 2.001 0.996

8000 11.748 11.195 1.049

12000 36.852 35.880 1.027

4 Related Work

Matson et.al. [2] defines a parallel pattern for algorithms named “Geometric
Decomposition Pattern” where data is decomposed according to updates in the
computation order and cite as example a mesh-computation program. The wave-
front pattern can be seen as a form of this pattern. In [2] it is mentioned that good
results can be obtained if computation and communication can be overlapped
but they do not provide any performance information about the application of
the involved patterns.

A parallel programming wavefront pattern is well defined by Snir [3]. Data
is distributed in a logical plane or space, and the computations start at an edge
and advances in diagonal to the opposite edge like a wave. It is used to solve
different kind of problems, like the ones in genetics, LU factorization and others,
with good performance results in shared memory systems [4].

A recent work about dynamic task scheduling in the linear algebra domain
[5] is oriented to maintain scalability in a tiled algorithm, where the tasks are
assigned dynamically by a centralized task manager. In this work barriers are
eliminated, data is distributed among processors in a 2D pattern, and synchro-
nization and communication are done by two specialized threads put aside of
computing. This work was done in the context of PLASMA (Parallel Linear
Algebra for Scalable Multi-core Architectures) project [6] devoted to take ad-
vantage of the multicore features of the new processors.

Parallel tiled algorithms for matrix factorizations are well analyzed in [7].
The focus is on fine granularity and asynchronous computing inside multicore
systems. A graph of task dependencies is used to launch task asynchronously.
There are not possible extensions to distributed systems. Also in the tiled al-
gorithms field, Drosinos and Kosiris [8] presents a work about parallelization of
tiled algorithms on SMP clusters. A general kind of algorithms is considered.
MPI is used as the communication library and OpenMP for task distrubution
in threads, suggesting several alternatives about a combined parallelization, fo-
cusing on load balance. Only Ethernet based results are given.

To the best of our knowledge, there are not works comparing relative effi-
ciency for Ethernet and Infiniband based cluster algorithms. Most of them are
oriented to evaluate the Infiniband implementation of the MPI library [9] [10]
[11].

5 Conclusions and Further Work

The hypothesis presented is that the Infiniband architecture in a cluster allows to
obtain results not expected by inefliciencies in an Ethernet based cluster under
some communications patterns. By another side, the order in which individual
tasks are computed must be suitable to the communication architecture. It could
be determined that for the matrix multiplication problem in a small cluster of
multicore nodes, based on an Infiniband network, to use an algorithm based
on point to point communications is as good as, or in same cases better than
the classic broadcast based algorithm. The order in which the computations are
made must be adapted to the features of the Infiniband network. A wavefront-
like order is valid but is not optimum because of the dependencies generated
in the task computing order, so multiples non blocking pending send / receive
operations must be launched in each processor to overcome the dependencies.

Pending to prove is the validity of these results under a cluster with more
nodes. The MPT’s broadcast primitive implementation use tree based algorithms
for distribute the messages over all the nodes. Large number of nodes in the
cluster allow to expect the confirmation of the conclusions.

Open to study is the validation of the present conclusions in algorithms where
the data dependency is stronger, like those in matrix factorization algorithms,
such as LU, QR and Cholesky methods, where real dependencies must be main-
tained. The parallel implementation of these algorithms are traditionally based
on collective communications, although they are good examples for using point

to point messages due the nature of its computations. Also open is the existence
of better scheduling policies that improve the results obtained.

References

[1] Tinetti Fernando G., Wolfmann Gustavo: Parallelization analysis on clusters of
multicore nodes using shared and distributed memory parallel computing models.
CSIE 2009, Los Angeles, USA, ISBN 978-7695-3507-4, 466-470 (2009)

[2] Timothy G. Mattson, Beverly A. Sanders, and Berna L. Massingill: A Pattern
Language for Parallel Programming; Addison Wesley Software Patterns Series; 2004.

[3] Snir, Marc: The wavefront pattern.
http://www.cs.uiuc.edu/homes/snir/PPP /patterns

[4] John Anvik, Steve MacDonald, Duane Szafron, Jonathan Schaeffer, Steven Brom-
ling and Kai Tan: Generating Parallel Programs from the Wavefront Design Pattern.
Proceedings of the 7th International Workshop on High-Level Parallel Programming
Models and Supportive Environments (HIPS’02), Fort Lauderdale, Florida, April
2002.

[5] Song, F., Yarkhan, A., Dongarra, J.: Dynamic Task Scheduling for Linear Alge-
bra Algorithms on Distributed-Memory Multicore Systems. University of Tennessee
Computer Science Technical Report, UT-CS-09-638, April 2009.

[6] Parallel Linear Algebra for Scalable Multi-core Architectures (PLASMA) project.
University of Tennessee. http://icl.cs.utk.edu/plasma/

[7] Buttari A., Langou J., Kurzak J. and Dongarra J.: A class of parallel tiled linear
algebra algorithms for multicore architectures, Parallel Computing, 35(1):38-53,2009,
Elsevier Science, Amsterdam, The Netherlands.

[8] N. Drosinos and N. Koziris: Efficient Hybrid Parallelization of Tiled Algorithms on
SMP Clusters International Journal of Computational Science and Engineering,2006.

[9] A.R. Mamidala, Jiuxing Liu, D.K. Panda: Efficient Barrier and Allreduce on Infini-
band clusters using multicast and adaptive algorithms, cluster, 135-144, Sixth IEEE
International Conference on Cluster Computing (CLUSTER’04), 2004

[10] Sayantan Sur, Hyun-Wook Jin, Dhabaleswar K. Panda: Efficient and Scalable
All-to-All Personalized Exchange for InfiniBand-Based Clusters, icpp, pp.275-282,
International Conference on Parallel Processing (ICPP’04), 2004

[11] Hoefler T., Siebert C., Rehm W.: A practically constant-time MPI Broadcast
Algorithm for large-scale InfiniBand Clusters with Multicast Parallel and Distributed
Processing Symposium, IPDPS 2007 1-8, March 2007, Long Beach, CA, USA.

[12] InfiniBand Trade Association: InfiniBand Architecture www.infinibandta.org

[13] Open MPI project: www.open-mpi.org

[14] J. Choi: A Fast Scalable Universal Matrix Multiplication Algorithm on
Distributed-Memory Concurrent Computers, ipps, pp.310, 11th International Par-
allel Processing Symposium (IPPS ’97), 1997

[15] Mellanox Technologies www.mellanox.com

[16] Sun HPC ClusterTools http://www.sun.com/software/products/clustertools

[17] Sun Studio Express http://developers.sun.com/sunstudio/

[18] Sun Studio Performance Analizer
http://developers.sun.com/sunstudio/overview /topics/analyzer_index.html

