
Uncertainty Reduction Method Based on
Distributed Computing Applied to Forest Fire

Prediction?

Germán Bianchini1, Ana Cortés2, Tomàs Margalef2 and Emilio Luque2

1 Departmento de Ingenieŕıa en Sistemas de Información, Universidad Tecnológica
Nacional Facultad Regional Mendoza, M5502AJE (Mendoza) Argentina

2 Departament d’Arquitectura de Computadors i Sistemes Operatius, Universitat
Autònoma de Barcelona, 08193-Bellaterra (Barcelona) Espanya

Abstract. In general, the purpose of the Data-Driven Prediction meth-
ods is focused on finding the vector of parameters which better describes
the real situation under consideration on a certain model. Therefore, it
is expected that the same vector of parameters could be used to describe
the immediate future. However, for those parameters that present a dy-
namic behavior (e.g. direction and speed wind in the case of forest fire
models), the found values cannot be adequate for doing the prediction.
We propose an alternative method developed in a new branch of Data-
Driven Prediction which we called Multiple Overlapping Solution. This
method combines Statistical concepts and Distributed Computing to ob-
tain a high quality prediction. Each parameter is represented by a range
of values with a particular cardinality for each one of them. A huge num-
ber of scenarios are generated and the forest fire propagation for each
scenario is evaluated and considered. Then, all results are statistically
aggregated to determine the burning probability of each area, which will
be compared with the real state to adjust the method. This aggrega-
tion is used to predict the burned area in the next step using a pattern
matching method, which provides the tendencies behavior for the next
step.

1 Introduction

Fire Management includes different areas (prevention, detecting and monitoring,
forest fire suppression, etc.) that could be enriched by the forest fire prediction
since it provides an important and powerful tool which would improve the current
methods and procedures. Numerous propagation models have been developed to
predict fire behavior. These models can be used to develop simulators and tools
for preventing and fighting forest fires [3, 4, 8, 9]. Such models require a set of
input parameters (vector of parameters), including vegetation type, moisture
contents, wind speed and direction and so on, and provide the evolution of the

? This work has been supported by the MEyC-Spain under contract TIN 2004-03388
and by the European Commission under contract EVG1-CT-2001-00043 SPREAD.



fire line in simulation steps. Simulation of forest fires propagation is an important
problem from the computational point of view due to the complexity of the
involved models, the necessity of numerical methods and the required resources
for calculation.

This paper concentrates on the idea that it is hardly probable to find an
input parameters vector to be applied to the propagation model because, as has
been observed, it is practically impossible to know the value of each parameter
when a fire starts. Therefore, we offer an alternative for determining the fire
behavior: a statistical method which uses the concept of multiple overlapping
solution as core to find the pattern of fire behavior. The method takes into
account thousands of possible situations rather than only one combination. Fur-
thermore, in this work we describe two more data-driven methods that face the
same problem but based on different principles: BBOF (Black-Box Optimiza-
tion Framework), based on diverse algorithms (genetic algorithms, simulated
annealing, taboo search) [1, 2] and GLUE (Generalized Likelihood Uncertainty
Estimation), based on uncertainty prediction [5, 15].

The remaining of this paper is organized as follows: In Sect. 2, the main
features of Data Driven methods are reported. BBOF and GLUE are described
in the same section. In Sect. 3 we describe our method. A general description
of the implementation of the methods is summarized in Sect. 4. Section 5 is
dedicated to depict the experiments. We compare the results obtained after
applying the three methods on five different real forest fires and, finally, Sect. 6
presents the obtained conclusions.

2 Forest Fire Methods Classification

Basically, there are two ways of applying a prediction method. The first, know
as Classical Prediction, consists of using any existing fire simulator behavior
to evaluate the position of the fire after a certain initial period of time. It is
necessary to feed the simulator with all the required parameters (weather data,
vegetation, terrain description, etc.). Next, the simulator is put into operation
to predict the fire line after a certain time interval.

Classical Prediction shows certain limitations. The application of Classical
Prediction commonly generates a certain degree of error. These errors not only
come from the problems of the model (errors due to a input data badly defined,
associated errors to the measures used in the calibration of the model, errors
due to the deficiencies in the structure of the model, etc.) but it also come
from the implementation of the simulator. There are certain parameters that
cannot be measured directly and, therefore, they must be estimated from indirect
measures (for instance, wind speed and direction should be interpolated from
several distant points).

The second option is composed by the Data-Driven Prediction Methods. Un-
der this name we have grouped those methods that, looking for a solution to the
problem manifested by classical methods, make use of optimization techniques
in order to calibrate the input parameters vector. The optimization process ob-



jective is to find an ideal vector of parameters. If this vector feeds the simulator,
the previous behavior would be described in the best form (i.e. the behavior that
has been used to calibrate the set of parameters). Therefore, we would assume
that the same vector of parameters could be used to describe the best possible
form for the immediate future.

A diagram of Data-Driven Methods can be observed in Fig. 1. We can appre-
ciate the main differences between Data-Driven Method and Classical method.
In first place, Data-Driven Prediction Methods require a large ensemble of in-
put parameters (different combinations that produce different scenarios). At the
same time, this characteristic is related to the second difference: Data-Driven
Prediction Methods need extra time to compute all these data. Finally, a very
important feature is that Data-Driven Prediction Methods apply some kind of
calibration or optimization (CS box) to find the most suitable vector of parame-
ters.

RFL0 RFL1 RFL2

FS PFL

Optimal

Parameters

Vector
Parameters Vectors

t = t0 t = t1 t = t2

time

CS

Calibration/

Optimization

Unique

solution

A large ensemble

of parameters

One parameters

vector

FS

Fig. 1. Diagram of Data Driven Prediction Method of forest fire propagation (FS: Fire
Simulator, CS: Calibration Stage, PFL: Predicted Fire Line, RFLX: Real Fire Line on
time X)

Both kinds of methods have a similarity: they use only one vector of parame-
ters to do the prediction. Therefore, we can say that Classical prediction methods
and Data-Driven methods give only one solution. Within these methods, we will
analyze two cases: BBOF and GLUE.

2.1 Black-Box Optimization Framework

The BBOF method is a framework [1]. It works in an iterative fashion, moving
step-by-step from an initial set of guesses to a final value which is expected to be
closer to the true (optimal vector of parameters) than the initial guesses. This
approach also focuses on overcoming the input-parameter uncertainty problem
by introducing the idea of applying an optimization scheme to calibrate the set of
input parameters with the aim of finding an optimal set of input, thus improving
the results provided by the fire-spread simulator.



A pre-set optimization technique is applied to generate a new set of guesses
in each iteration, which should be better than the previous ones. This technique
offers the possibility of applying diverse ideas: biological evolution, simulated
annealing and taboo search. These algorithms work on populations of individu-
als instead of single solutions, which allows performing the search in a parallel
approach.

In Fig. 2 is shown a graphical schema of the BBOF method.

RFL0 RFL1 RFL2

FF OPTFS FS PFL

Optimal

Parameters

Vector
Parameters Vectors

t = t0 t = t1 t = t2

time

Fig. 2. Diagram of BBOF method (FS: Fire Simulator, CS: Calibration stage, FF:
Fitness Function, OPT: Optimization stage, PFL: Predicted Fire Line, RFLX: Real
Fire Line on time X)

The optimization method is associated with the specification of a mathe-
matical objective function (called F ) and a vector of parameters that should be
tuned to optimize the objective function. This vector of parameters is referred
to as Θ. Therefore, we can formulate an optimization problem as follows:

Find Θ∗ that optimizes F (Θ)
Θ∈S . (1)

where F represents the objective function. The optimization problem deals with
the aim of defining a process to find a setting for the vector of parameters Θ
(where Θ∗ is a particular setting of Θ), which provides the best value for the
objective function F . This search is carried out according to certain restrictions
of the values that each parameter can take. The whole range of possibilities that
can be explored in obtaining the optimization goal is called the search space,
which is referred to as S.

In Fig. 2 the vector Θ corresponds to the vectors of parameters to be opti-
mized. The length of this vector will depend on the underlying simulator, but in
general, given that the majority of fire simulators are based on the Rothermel
model [17], in average there are ten o twelve components.

The fire simulator (FS box) and the fitness function (FF box) conform the
objective function F . The OPT box will include the optimization strategy se-
lected to solve the problem(evolutionary algorithms, simulated annealing, etc.).
The goal of the optimization strategy consists in generating a new vector of



parameters (Θ∗), which minimizes the underlying error prediction, taking into
account the information provided by F . The optimization process is performed
in an iterative way. This feedback loop will be repeated until either a ‘good’ so-
lution is found or a predetermined number of iterations has been reached, which
will be used as the input set for the underlying fire simulator, in order to obtain
the predicted position of the fire front (PLF) in the very near future (t2 in Fig.
2). This process is repeated each time a new fire line feeds the process in order
to readjust the prediction.

2.2 Generalized Likelihood Uncertainty Estimation

The GLUE method of Beven and Binley [5] is a Monte Carlo simulation based
approach [14, 16] to model conditioning and uncertainty estimation. It is a frame-
work for estimating predictive uncertainty of complex environmental models.
Originally, this method was developed for being used with hydrological models,
but it has subsequently been applied to a wide range of environmental systems
[15].

GLUE rejects the idea that there is only one optimum vector of parameters
in a model calibration. It considers that there are multiple vectors of parameters
and even multiple model structures that may be acceptable in simulating the
system under study. Therefore, it is possible to evaluate the relative likelihood of
a given model and parameters vector in reproducing the available data to test the
models. Then, uncertainty in the predictions may be estimated by calculating a
likelihood weighted cumulative distribution of a variable predicted based on the
simulated values from all the retained simulations (those with a likelihood value
greater than zero). Thus, for any model predicted variable, Z:

P (Ẑt < z) =
N∑

i=1

L
[
M(Θi)|Ẑt,i < z

]
. (2)

where P (Ẑt < z) are prediction quantiles, Ẑt,i is the value of variable Z at time
t simulated by model M(Θi) with parameter set Θi and likelihood L[M(Θi)].
Then, the accuracy in estimating such prediction quantiles will depend on having
a suitable sample of models to represent the behavioral part of the model. In this
framework the parameters values are treated as a vector with their associated
likelihood value so that any interactions between parameter values in fitting the
available observations are included implicitly in the conditioning process.

In this particular case, has been used a fuzzy measure of goodness of fit. Initial
prior likelihoods were set to zero for all the vectors of parameters. The updating
of likelihoods from one time step to the following one consisted in averaging of
the prior and the current likelihoods. In order to make the uncertainty limits
converge when the actual rate of spread did not change, this average can be
raised, optionally, to a power p (p ≤ 1):

Lp(M(Θi)) =
[L0(M(Θi) + L(M(Θi)|Y )]p

C
. (3)



where L0(M(Θi) is the prior likelihood of the model M with the vector of pa-
rameters Θi; L(M(Θi)|Y ) is the goodness of fit of the of the model M with
the parameter set Θi to the latest observations Y ; Lp(M(Θi) is the posterior
likelihood of the model M with the vector of parameters Θi; and C is a constant
which ensures the sum of the posterior likelihoods of all the parameters to 1.

It was not possible to use the classical Bayes equation approach of multiply-
ing these likelihoods (because when one vector of parameters would get a zero
likelihood it would be zero forever), but the idea behind the procedure is exactly
the same.

GLUE considers a high number of possible vectors of parameters which are
stored in the PS box (Parameters Sets) where the likelihood of vectors of para-
meters are updated. To reduce the divergence between classical prediction and
real-fire propagation, it is necessary to evaluate the goodness of the results pro-
vided by the simulator. For this purpose, a Fitness Function must be included
(FF box). This function will determine the degree of matching between the pre-
dicted fire line and the real fire line. In Fig. 3 are shown this features in a
graphical schema.

RFL0 RFL1 RFL2

FFFS FS PFL
The best

parametesr

vector
Parameters Vectors

t = t0 t = t1 t = t2

time

PSCS Parameters Vectors for next time

Fig. 3. Diagram of GLUE method (FS: Fire Simulator, CS: Calibration stage, FF:
Fitness Function, PS: Parameters Sets, PFL: Predicted Fire Line, RFLX: Real Fire
Line on time X)

3 Multiple Overlapping Solution

In this work we evaluate a new method which we called Statistical System for
Forest Fire Management (S2F2M) [7]. Such a method is placed in a new branch
of Data-Driven methods with Multiple Overlapping Solution. Although S2F2M
belongs to the Data Driven type, it generates a prediction based on the totality
of the proposed cases, rather than based on a single case, such as BBOF and
GLUE.

We define the concept of scenario as a particular setting of the set of para-
meters. S2F2M considers at any moment the total set of scenarios to carry out



the search of the forest fire behavior. Unlike the methods of a unique solution,
it does not make distinction between good and bad cases. The interesting fact
of this methodology is that every possible scenario contributes with its particu-
lar characteristics to find a better prediction to describe the behavior pattern.
Finally, we also present a comparison among the two methods of Data-Driven
prediction mentioned above (BBOF and GLUE) and our method, with the ob-
jective of showing the effectiveness of our proposal of Data Driven prediction
with Multiple Overlapping Solution. This comparison will be done on four cases
of real forest fires.

3.1 Statistical System for Forest Fire Management

The methodology of S2F2M is based on statistics. There are two possible ways
of collecting data about an event. In an observational study the researcher only
takes notes without interacting with the situation. Data are obtained as they ap-
pear. Another way is through designed experiments. In this kind of experiments
it is possible to make deliberate changes in the controlled variables of a system
or process. The results are observed and then it is possible to either make an
inference or make a decision about variables that are responsible for changes.
When there are a lot of significant factors involved (i.e. weather, wind speed,
slope, etc.), the best strategy is to use a factorial experiment. A factorial exper-
iment is one in which the factors vary at the same time [11] (for example, wind
conditions, moisture content and vegetation parameters). A scenario represents
each particular situation that results from a set of values.

For each parameter we define a range and an increment value, which are used
to shift throughout the interval. For a given parameter i (which we will refer to
as Parameteri) the associated interval and increment is expressed as:

[Inferior threshold i, Superior threshold i], Increment i . (4)

Then, for each Parameteri, it is possible to obtain a number Ci, which
expresses the parameter domain cardinality, i.e. how many different values could
take the parameter i according to its associated interval and increment. The
Parameter Domain Cardinality is calculated as follows:

Ci =
((Superior threshold i− Inferior threshold i) + Increment i)

Increment i
. (5)

Finally, in (6) we show how by considering the cardinality of each parameter
it is possible to calculate the total number of scenarios obtained from variations
of all possible combinations.

#Scenarios =
p∏

i=1

Ci . (6)

where p is the number of parameters.



For a given time interval, we want to know whether a portion of the terrain
(called a cell) will be burnt or not. If n is the total number of scenarios and nA

is the number of scenarios in which the cell A was burned, we can calculate the
ignition probability (Pign) as:

Pign(A) = nA/n . (7)

The next step is to generalize this reasoning and apply it to some set of
cells. As a consequence, we obtain a matrix with a value associated to each cell
that represents the probability of each cell to be catch by the fire (Pign) taking
into account n scenarios. The set of cells whose Pign value is bigger or equal to
a certain particular value PK , where 0 ≤ PK ≤ 1, conforms what we call the
probability map with probability PK .

It should be noticed that, although two different cells may have the same
Pign value, this does not mean that the set of parameters that generates this
probability in each cell is necessarily the same. Consequently, it is not possible
to know the set of scenarios that generate a particular probability map.

Once we have obtained the output matrix, which includes all the probability
maps, the next step consists in comparing the real fire against this matrix.
The objective of such a comparison is to search for a particular value of Pign

whose associated probability map provides the best matching with the real fire
propagation. In other words, we are interested in finding what we refer to as a
Key Ignition number (Kign). Therefore, the associated map of probability has
to accomplish the condition expressed in (8).

{x : Pign(x) ≥ Kign/n | Kign ∈ IN} . (8)

with n equal to the number of scenarios and Pign(x) varying from Kign/n to 1,
i.e., the set of cells (x) which have been burned at least Kign times.

A graphical schema of the method is presented in Fig. 4. The process of
prediction needs a calibration stage just at the beginning (time period that goes
from t0 to t1 in Fig. 4) to firstly obtain a Kign value to start-up the prediction
chain. Once this first Kign has been obtained, both the prediction operation
for time ti and the calibration stage for time ti+1 will be overlapped on time
ti+1. This situation is the one depicted in Fig. 4 for time t2. We can see that the
output generated by SS box (Statistical System) is used for a double purpose. On
the one hand, the probability maps are used as an input of the SK box (Search
Kign) to search for the current Kign, which will be used at the next prediction
time (t3). On the other hand, the SS box output constitutes the input of the
Fire Prediction box (FP), which will be in charge of generating the prediction
map for time t2 taking into account the Kign evaluated at t1. This process will
be repeated along the execution as the system is fed with new information about
the fire situation.



RFL0 RFL1

SSFSParameters

Vectors

t = t0 t = t1

time

Parameters

Vectors

SK FF

RFL2

FS PFL

t = t2

CSCS FP

Fig. 4. Diagram of S2F2M method (FS: Fire Simulator, SS: Statistical System, SK:
Search Kign, FF: Fitness Function, CS: Calibration stage, FP: Fire Prediction, PFL:
Predicted Fire Line, RFLX: Real Fire Line on time X)

4 Implementation Features

Although heuristic optimization techniques may reduce the time of search, we
still could make the execution time faster by applying distributed computing
concepts. As we explained in the previous sections, these kinds of techniques
are very time consuming for different reasons: the complexity of the involved
models, the huge number of scenarios considered, the real time restrictions, etc.

Distributed Systems have many advantages. We can mention some examples:
high performance, high throughput, expandability and scalability, economies of
scale, technology, between others. Furthermore, some applications are inherently
distributed in nature, such as geographically diverse operations or suit multiple
processors working in parallel such as inherently parallel problems. An example
of this are the data driven methods mentioned in this work. Therefore, such
methods have been parallelized in order to reduce the involved execution time.

The three methods described above have been implemented in operational
systems that incorporate the same simulation kernel and apply a methodology
to evaluate the fitness function. These systems have been developed on a PC
Linux cluster using MPI [18, 13] as the message passing library.

In the following subsections, we comment the elements in common between
the three systems, and we describe how we took advantage of parallel and dis-
tributed systems.

4.1 Simulation Kernel

BBOF, GLUE and S2F2M use as a simulation kernel a forest fire simulator
(fireSim) based on the fireLib library [6].

fireLib is a C function library for predicting the spread rate and intensity of
forest fires. It is derived directly from the BEHAVE fire behavior algorithms [3]
for predicting fire spread in two dimensions, but is optimized for highly iterative
applications such as cell-or wave-based fire growth simulation. In particular, this



simulator uses a cell automata approach to evaluate fire spread. The terrain is
divided into square cells and a neighborhood relationship is used to evaluate
whether a cell will be burnt and to estimate the instant in which the cell will be
reached by the fire.

As inputs, this simulator accepts maps of the terrain, vegetation characteris-
tics, wind and the initial ignition map, and, as output, the simulator generates
a map of the terrain in which each cell is labeled with its ignition time.

4.2 The Fitness Function

To evaluate and compare the systems’ responses, we defined a fitness function.
Since the three systems use an approach based on cells, the fitness function was
specified as follows:

Fitness =
(#cells

⋂−#IgnitionCells)
(#cells

⋃−#IgnitionCells)
. (9)

where, #cells
⋂

represents the number of cells in the intersection between the
simulation results and the real map, #cells

⋃
is the number of cells in the union

of the simulation results and the real situation, and #IgnitionCells represent
the number of burned cells before starting the simulation.

A fitness value equal to 1 corresponds to the perfect prediction because it
means that the predicted area is equal to the real burned area. On the other
hand, a fitness equal to zero indicates the maximum error, because in this case
the simulation did not coincide with reality at all.

4.3 Parallelism on the Methods

The simplest step from sequential methods into the parallel version is to recog-
nize that many inner loops are only used to specify that the same operations are
to be performed repeatedly on a set of disjoint values. These can be formulated
as vector operations [10] where the same operation is performed on each element
of a vector. This single vector operation is equivalent to writing a sequential loop
that adds the corresponding elements.

The same operation can be carried out on multiple data items, that is, a
vector operation, by a single control unit and replicated complete arithmetic
units. It can also be done by organizing the parallel hardware into a SIMD
scheme [12]. This way of work is called data parallelism and it has had a big
impact on high-speed scientific computation.

In our case, every method has to make the same calculations a lot of times
because they use a sequential simulator in a loop, giving as a result a very time
consuming methodology.

Using multiple computational resources working in parallel to obtain the de-
sired efficiency is a good solution. We choose Master-Worker architecture because
it is suitable to achieve this aim. A main process (Master process) can calcu-
late each combination of parameters and send them to a set of Workers. These



Workers carry out the simulation and return the partial result to the Master.
This resulting map indicates which cells are burned and which are not. These
explicit transfers of data are commonly done by the message passing operation.

In distributed computing, the interprocessor communication is made by I/O
operations. As a consequence, one way of providing high-level support for distrib-
uted memory programming is to provide a communication subroutine package
for an existing sequential language. In this case, the communication library MPI
(Message Passing Interface) is a good option [18, 16].

MPI is defined as an extension to Fortran, C, and C++. We chose it because
the simulator used as core (fireSim) has been developed in C, and furthermore,
all methods presented and commented in this work have been developed in C
and C++ also.

5 Comparative Experiments

An interesting and effective way of compare the three methods is to apply them
on a set of real experiments in the field. These burns took place in Serra da
Lousã (Gestosa, Portugal), at an altitude varying from 800 and 950 m above sea
level. The set of burns were part of the SPREAD project [19]. In the Gestosa
field experiments, the terrain was divided into dedicated plots in order to carry
out different sorts of tests and measurements. We worked with four plots, which
had the following characteristics:

1. Experiment 1: the plot was represented by means of a grid of 89 columns x
91 rows and the slope was 18◦.

2. Experiment 2: the plot was represented by means of a grid of 75 columns x
126 rows and the slope was 21◦.

3. Experiment 3: the plot was represented by means of a grid of 20 columns x
30 rows and the slope was 6◦.

4. Experiment 4: the plot was represented by means of a grid of 20 columns x
30 rows and the slope was 6◦.

In experiments 1 and 2 the cell size was 1 m2, and in experiments 3 and 4
the cell size was 0.333 m2. The remaining parameters such as wind conditions
and moisture content were variable.

In order to gather as much information as possible about the fire-spread
behavior, a camera recorded the complete evolution of the fires. The videos
obtained were analyzed and several images were extracted every certain period
of time. From the images, the corresponding fire contours were obtained and
converted to cell format in order for methods to interpret them.

The results presented in this work, were obtained by executing the three
systems on a cluster computer (32 processors) of homogenous PENTIUM IV
(3.0 GHz, Fedora Core 4, Ethernet card Broadcom NetXreme Gigabit).



5.1 Experiment 1

According to the known information about the experiment and the models of
Rothermel, for some of the parameters certain ranges have been specified. A part
of this information has been measured during the experiment, and the remainder
has been taken from standard values used by BehavePlus [4].

After the application of each method, we obtained the fitness values shown
on Table 1. The second row of the table means that if we are at time 4 and we
make a prediction for minute 6, we will get a fitness equal to 0.5345 for S2F2M,
0.4188 for GLUE and 0.4513 for BBOF method.

Table 1. Comparative of found fitness in each method for experiment 1 (time is ex-
pressed in minutes)

Initial Final Fitness
Time Time S2F2M GLUE BBOF

2.0 4.0 - - -
4.0 6.0 0.5345 0.4188 0.4513
6.0 8.0 0.7495 0.6907 0.6985
8.0 10.0 0.4413 0.3014 0.4173
10.0 12.0 0.7625 0.7623 0.6231
12.0 14.0 0.4354 0.2093 0.3956

We can observe that the prediction proposed by S2F2M always overcomes the
GLUE and Evolutionary methods. The highest fitness value (0.7625) is reached
at time 12. In fact, it is possible to observe that in final time 10 and 14, the
fitness value becomes significantly lower. However, those values are still above
GLUE fitness and above the Evolutionary case.

5.2 Experiment 2

This experiment is very different to the previous one. In this case the file of ranges
exhibits some difference with the previous experiment because this one presents
other characteristics: the wind speed is different and also the slope. Furthermore,
this is an experiment started with only one ignition point (because of direction
and speed of wind, fire grows in an elliptical way).

The minute 3 was chosen as the initial time t0. Since the step was defined to
one minute, the first adjustment was made on minute 4, and, therefore, the first
prediction was carried out on minute 5.

After the application of each method, we obtained the fitness values shown
on the Table 2.

5.3 Experiment 3

This is a short experiment. The reason is the reduced plot size. For this cause,
the representation was 60 x 90 cells, using a smaller cell size. In this way, we can



Table 2. Comparative of found fitness in each method for experiment 2 (time is ex-
pressed in minutes)

Initial Final Fitness
Time Time S2F2M GLUE BBOF

3.0 4.0 - - -
4.0 5.0 0.2565 0.2056 0.2162
5.0 6.0 0.5336 0.5820 0.4811
6.0 7.0 0.7036 0.6466 0.6358
7.0 8.0 0.6074 0.5025 0.7728
8.0 9.0 0.4161 0.3122 0.7468

obtain a better terrain definition that allows us to study the spread fire in more
detail. It is a case of linear ignition, started with pyrotechnic devices.

The duration of the burn in the experiment was 10 minutes. In this case, we
applied the methods four times at time instances 4, 6, 8 and minute 10. The
value of slope is 6 degrees, therefore, the land inclination is not a determinant
factor in the fire behavior, at least for this case. The results are summarized in
Table 3. Once again we can easily conclude that S2F2M method provides better
results than the GLUE scheme and BBOF method.

Table 3. Comparative of found fitness in each method for experiment 3 (time is ex-
pressed in minutes)

Initial Final Fitness
Time Time S2F2M GLUE BBOF

2.0 4.0 - - -
4.0 6.0 0.8819 0.6895 0.8230
6.0 8.0 0.7917 0.7083 0.7450
8.0 10.0 0.7073 0.6068 0.7068

5.4 Experiment 4

The last experiment, similar to the previous one, has a reduced plot size. For this
reason, once again we defined a small cell size to maximize the number of cells
in the grid. The duration of this experiment was very short. A possible reason is
the wind effect: with a high wind speed the ROS (ratio of spread) and the flame
intensity can become very high. The combination of these factors produces a
fast propagation, and, therefore, a more dangerous fire.

In this case, the plot was burned by linear ignition on left border.
Table 4 lists the resultant fitness values after applying the methods to pre-

dict the fire behavior on this experiment. We can see that fitness values are
very similar between the three methods. However, in general the statistical ap-



Table 4. Comparative of found fitness in each method for experiment 4 (time is ex-
pressed in minutes

Initial Final Fitness
Time Time S2F2M GLUE BBOF

2.0 4.0 - - -
4.0 6.0 0.4976 0.5092 0.4640
6.0 8.0 0.5257 0.4984 0.4539
8.0 10.0 0.6451 0.4948 0.4964

proach obtains better results. Also, it is positive that statistical predictions are
increasing on each prediction step.

6 Conclusions

In this study, we have compared three methods which focus in the input para-
meter uncertainty reduction. The compared methods are included in a category
of application that takes advantage of distributed computing. In particular, we
are talking about a kind of distributed computing commonly used to obtain high
performance computing: cluster computing.

The parallel version of the methods allowed us to reduce considerably the
execution time (for instance, we reached a speed-up of 27.5 using 32 processors
with S2F2M). Parallel applications and architectures are, thus, the natural way
toward computational speed that can accompany the progress in the technology.

In general, with the S2F2M method we obtain a better prediction that using
BBOF and GLUE. We found that the disadvantages of GLUE and BBOF meth-
ods are that the vector of parameters selected as the best predictor can differ
with the real set of parameters. However, because S2F2M has a different basis,
this kind of problem can never happen. This is a clear result of the benefits of
Data Driven Prediction methods based on Multiple Overlapping Solution.

References

1. Abdalhaq B.: A methodology to enhance the Prediction of Forest Fire Propagation.
Ph. D Thesis. Universitat Autnoma de Barcelona, Spain (2004)

2. Abdalhaq B., Corts A., Margalef T., Bianchini G., Luque E.: Between Classical and
Ideal: Enhancing Wildland Fire Prediction Using Cluster Computing. Journal of
Cluster Computing Special Issue on cluster computing in science and engineering.
Vol 9, No. 3, pp. 329-343 (2006)

3. Andrews P.L.: BEHAVE: Fire Behavior prediction and modeling systems - Burn
subsystem, part 1. General Technical Report INT-194. Odgen, UT, US Department
of Agriculture, Forest Service, Intermountain Research Station (1986)

4. Andrews P.L., Bevins C.D., Seli R.C.: BehavePlus fire modeling system, version 2.0:
User’s Guide. Gen. Tech. Rep. RMRS-GTR-106WWW. Ogden, UT: Department of
Agriculture, Forest Service, Rocky Mountain Research Station. pp. 132 (2003)



5. Beven K., Binley A.: The future of distributed models: model calibration and un-
certainty prediction. Hydrological Processes 6:279-298 (1992)

6. Bevins C.D.: FireLib User Manual & Technical Reference. (1996)
http://www.fire.org.

7. Bianchini G., Cortés A., Margalef T., Luque E.: S2F2M - Statistical System for
Forest Fire Management. LNCS 3514, pp. 427-434 (2005)

8. Finney M.A.: FARSITE: Fire Area Simulator-model development and evaluation.
Res. Pap. RMRS-RP-4, Ogden, UT: U.S. Department of Agriculture, Forest Service,
Rocky Mountain Research Station. pp. 47 (1998)

9. Jorba J., Margalef T., Luque E., Campos da Silva J., Viegas D.X.: Parallel Approach
to the Simulation of Forest Fire Propagation. Proc. 13 International Symposium
“Informatik fur den Umweltshutz” der Gesellshaft Fur Informatik (GI). pp. 68-81
(1999)

10. Jordan H.F, Alaghband G.: Fundamentals of Parallel Processing. Prentice Hall
(2003)

11. Montgomery D.C., Runger G.C.: Probabilidad y Estadstica aplicada a la Ingeniera.
Limusa Wiley (2002)

12. Morrison R.S.: Cluster Computing: Architectures, Operating Systems, Parallel
Processing & Programming Languages. GNU General Public Licence (2003)

13. Pacheco P.: Parallel Programming with MPI. Morgan Kaufmann Publisher (1997)
14. Pincus M.: A Monte Carlo Method for the Approximate Solution of Certain Types

of Constrained Optimization Problems. Operations Research, 18. pp. 1225-1228
(1970)

15. Piñol P., Salvador R., Beven K.: Model Calibration and uncertainty prediction of
fire spread. pp. 99- 111. ISBN 90-77017-72-0 (2002)

16. Quinn M.J.: Parallel Programming in C with MPI and Open Mp. First Edition.
McGraw-Hill (2004)

17. Rothermel R. C.: A mathematical model for predecting fire spread in wildland
fuels. USDA FS, Ogden TU, Res. Pap. INT-115 (1972)

18. Snir M., Otto S., Huss-Lederman S., Walker D., Dongarra J.: MPI: The complete
reference. The MIT Press. Cambridge Massachusetts. London England (1996)

19. Viegas D.X. (Coordinator) et al. 2004.: Project Spread - Forest Fire Spread Pre-
vention and Mitigation. Accessed on November 2008.
http://www.algosystems.gr/spread/


