
Monitoring, Analysis and Tuning Environment:
Classification, Intrusion and Overhead?

Paola Caymes-Scutari1, Anna Morajko2, Tomàs Margalef2 and Emilio Luque2

1 Departamento de Ingenieŕıa en Sistemas de Información, Universidad Tecnológica
Nacional - Facultad Regional Mendoza. (M5502AJE) Mendoza, Argentina.

2 Departament d’Arquitectura de Computadors i Sistemes Operatius, Universitat
Autònoma de Barcelona, 08193-Bellaterra (Barcelona) Espanya

Abstract. The increasing use of high performance computing has been
motivated by the requirements of the scientific applications –such as the
data set size or the complexity of the operation– and empowered by the
advances in the abilities of the processors and the interconnection net-
works technology. However, the parallel programming paradigm involves
additional aspects to the merely functional which could provoke differ-
ent kinds of bottlenecks in the performance of the applications. Since the
performance is a key issue specially in grand challenge problems, the ap-
plications must be optimized or tuned to use the computational resources
in an efficient way. Different approaches and tools are available to assist
the users in the tuning process at different levels. In this paper we present
an overview about the performance tuning problematic, the advantages
and disadvantages of the performance tools and analyze the particular
case of MATE (Monitoring, Analysis and Tuning Environment), which is
a dynamic and automatic tuning tool specially suitable for time’ sharing
or heterogeneous systems. The analysis is focused on the intrusion and
the overhead caused by the environment over the own performance of
the application, and demonstrate that the obtained benefits are much
more significant than the overhead provoked.

1 Introduction

In the last years, the computing performance demand has been in increase.
Many applications involve a big data set or very complex operations such as
the determining of the human genome, the simulation of the universe, study
of nature models, etc. These classes of applications require the use of systems
of great computer power. Due to the fact that the improvement of the speed
of operation of the sequential systems (the processors and other components)
is restricted by the speed of the light, the thermodynamic laws, and the high
financial costs for the manufacture of the processor, the scientific comunity has
been directing the attention towards the parallel/distributed paradigm. A viable
and cost-effective solution is to connect multiple processors together and to co-
ordinate their computational power. The resulting systems are popularly known
? This work has been supported by the MCyT under contract TIN2007-64974.



as parallel computers, and they allow for the sharing of a computational task
among multiple processors [2]. The general and basic idea is that n processors or
nodes should provide a computational speed n times faster than a simple node,
i.e., the problem should be solved in an interval of 1/n of the time [4]. Clearly,
the advantages of using parallel systems constitute an ideal situation which in
practice is not always true. However, even though parallel systems have some
limitations in execution time, those limits are upper than the uniprocessors ones.

When using parallel systems, the development of parallel applications has
to follow a specific manner to allow for their execution in a parallel system. In
addition, once the application has been implemented, it has to be systematically
tested from the functional point of view in order to guarantee its correctness.
Following that, the application has to be adjusted to ensure that no bottlenecks
exist in the execution, and in consequence that fulfils the aim of providing a
better performance. In consequence, given that the performance of the parallel
applications is a key aspect, the programmers have to face a series of difficulties
to reach the best performance of their applications. Through the years, sev-
eral indices have been defined in order to evaluate the deployment of parallel
computing. Some of the performance parameters, such as the execution time,
the scalability, the efficiency and the load balance, have a general importance.
Nevertheless, none of those indices provides the users with specific information
or suggestions to overcome the problems. Then, the development of an applica-
tion with a good performance, forces the users to face the optimization process,
so-called tuning process.

The tuning process includes several and successive phases to adapt and im-
prove the behaviour of the applications by modifying their critical parameters.
Firstly, during a monitoring phase the information about the behaviour of the
application is captured. Next, the information is analyzed, by looking for bot-
tlenecks, deducing their causes and trying to determine the adequate actions to
eliminate them. Finally, the appropriate changes have to be applied to the code
to solve the problems and improve the performance. As a consequence, the devel-
opers are forced to know very well the application, the different involved software
layers and the behaviour of the distributed system. All these issues make difficult
and costly the performance tuning process, specially for non-expert users, due
to a high degree of expertise is required in order to significantly improve the be-
haviour of the application. Fortunately, through the years different approaches
and tools have been developed with the aim of helping the user during some of
the optimization phases (monitoring, analysis or tuning phases). In the following
section we depict the main goals, characteristics, advantages and drawbacks of
the different approaches to tune applications. In Sect. 3 we document MATE [9,
3] , a dynamic and automatic tuning tool based on performance models. In Sect.
4 we present the study carried out about the overhead and intrusion caused by
MATE at the different levels of its operation. Finally, in Sect. 5 we present the
main conclusions of this work.



2 Performance Approaches

The basic purpose of the performance tools is to help a programmer to under-
stand the performance characteristics of an application. In particular, the tool
should analyze and locate the parts of the application that exhibit poor perfor-
mance and cause program bottlenecks. Such tools are categorized as monitoring
tools, analysis tools or tuning tools.

Most performance monitoring tools consist of some or all of the following
components [2]:

– a technology of inserting instrumentation calls to the performance monitor-
ing routines into the user’s application,

– a run-time performance library that consists of a set of monitoring routines
that measure and record various aspects of a program performance, and

– a set of tools for processing and/or displaying the performance data.

With regard to the performance analysis tools, since their objective is to au-
tomate the evaluation of the monitored information, they include some perfor-
mance knowledge and some mechanism to find bottlenecks and provide solutions.
The complexity and the philosophy of the analysis process determines how fast
the solutions or modifications are available to be introduced into the application.
In the case of the performance tuning tools, they include some mechanism to
instrument the code with the aim of automating the process of inserting modi-
fications into the application to overcome the detected bottlenecks. Some tools
cover more than one of these categories, helping the user in more than a simple
level. The usage of these performance tools offers several benefits and drawbacks.
On the one hand, the tools alleviate the responsibility and knowledge of the user
about parallelism and performance problems. On the other hand, the perfor-
mance tools introduce some overhead on the normal operation of the program.
A particular issue is the intrusiveness of the tracing calls and their impact on
the applications performance. It is very important to note that instrumentation
affects the performance characteristics of the parallel application and thus pro-
vides a false view of its performance behaviour [2]. However, the overhead is in
general hidden by the benefits.

Every tool shares the goal of helping users to tune the behaviour of their
applications. Through the years, several approaches in performance monitoring,
analysis and tuning have been proposed in order to assist the users in improving
their applications. In the following subsections we provide an overview of them.
In particular, since our research is focussed on the dynamic tuning approach,
we mention some of the most important tools in the approach and we compare
them with MATE, the core of our work.

2.1 Classical Performance Analysis

The classical performance analysis approach is based on the post-mortem analy-
sis of the application behaviour carried out by the user. Figure 1 presents the



general flow of this kind of analysis. First, while the application is running,
a monitoring tool obtains information about the behaviour of the application.
The corresponding instrumentation had been statically inserted by the monitor-
ing tool or manually by the user. When the application is being executed and
performing the instrumented code, the instrumentation allows for data measure-
ments and collection. The collected information is stored in a trace file. Once
the execution of the application finishes, the trace file is used to interpret and
understand the behaviour of the application. Then, in the following step, the
performance data are graphically interpreted by some visualization tool. During
the performance analysis phase, the graphics are useful to help the user to under-
stand the tracing in order to analyze the behaviour presented by the application
through the execution. In the last step, the user manually changes the source
code of the application in accordance with decisions made during the analysis.
Then, the modified program has to be re-compiled and re-linked for future ex-
ecutions. This process is successively repeated until an acceptable performance
is achieved.

Source

Code
Application

Execution

Performance Tuning

Performance Analysis

Monitoring Visualization

Trace file

User

Tools

Execution time

Fig. 1. Classical performance analysis approach

Even though the classical approach has been used for many years, it has
several drawbacks. It requires the user to have a very high degree of expertise
in order to analyze and make decisions on how to improve the behaviour of the
application; this is a very difficult task due to the size of trace file is in general
proportional to the size and the execution time of the application. In addition,
visualization tools do not scale very well, which has as a consequence that when
there is a high number of processes involved in the application or the execution
time is too long, the graphics become unreadable. Furthermore, because of the
analysis is made by considering a single execution, the tuning is only useful when
the behaviour of the application neither depends on the input data nor varies
from one iteration to another nor changes the platform in which it is executed. In
summary, the classical approach constitutes a very time consuming task which
is constrained to a reduced set of applications.



2.2 Automatic Performance Analysis

The automatic performance analysis approach releases the user from having a
high degree of expertise in parallel systems and performance analysis. This is
shown in Fig. 2. When the execution of the application finishes, the analysis tool
looks for performance bottlenecks automatically by considering the information
collected by the monitoring tool and its own knowledge about potential problems
the application can present. Depending on the philosophy of each tool, the per-
formance knowledge is represented and managed in a particular way (heuristics,
history, fuzzy logic, etc.). The knowledge allow for detection of bottlenecks as
well as their causes and needed changes to improve the future executions of the
application. When the performance analysis finishes, it provides the user with
the corresponding suggestions to modify the source code. As in the previous ap-
proach, the user changes the application, re-compiles and re-links it to the next
execution.

Source

Code
Application

Execution

Performance Tuning

Monitoring Performance

Analysis

Trace file

User

Tools

Suggestions

for user

Execution time

Fig. 2. Automatic performance analysis approach

Although this approach exempts the user from the very difficult and time
consuming task of analysing the behaviour of the application, it has some con-
straints. On the one hand it is still based on trace files and considers a single
execution of the application; on the other hand, the creation of knowledge models
is not an easy task and need a trade-off between simplicity and accuracy. Then,
it is only suitable for the same set of applications as in the classical approach.
Some examples of tools following this approach are KappaPi [5] and Paradise
[6]

2.3 Dynamic Performance Analysis

The dynamic performance analysis proposes to overcome the drawbacks pre-
sented by the post-mortem analysis, such as the analysis based on a single run
of the application and on large trace files. The analysis is made “on the fly”
by considering performance data collected by an on-line monitoring tool, which



presents the benefit of independence from a trace file. Figure 3 shows the gen-
eral view of this approach. The instrumentation can be dynamically inserted
into or eliminated from the application by applying dynamic instrumentation
techniques [1].

Source

Code
Application

Execution

Performance

Tuning

Monitoring
Performance

Analysis

User

Tools Suggestions

for user

Execution time

Fig. 3. Dynamic performance analysis approach

The dynamic analysis approach allows for detection of performance problems
faster than the post-mortem approaches. It is suitable for iterative long-running
applications. However, it requires the user to stop, modify, recompile and re-run
the application in order to apply the tuning. Then, as in the previous approaches,
decisions based on a single execution could not be significant in future executions,
when the application depends on the input data, their evolution, or the state of
the system. Paradyn [8] is an example tool in the dynamic performance analysis
approach.

2.4 Dynamic Performance Tuning

The previous three approaches have been incrementally overcoming the difficul-
ties presented by their precedent approaches. The dynamic performance tuning
approach offers automatic tuning during run-time instead of manual insertion
of changes in the source code. Figure 4 shows the general operation of this ap-
proach.

All the phases in this approach are carried out during run-time. The analysis
step is not based on trace files, but it uses the measurements provided by a
dynamic monitoring tool. According to the evaluation of the performance, the
tuning actions are automatically and dynamically carried out in the applica-
tion. Thus, the running parallel application would be automatically monitored,
analyzed and tuned on the fly without need to re-compile, re-link nor restart
it. This completely exempts the users from taking part in tuning their applica-
tions. Another advantage is that the performance of the application is evaluated



Application

memory

Source

Code
Application

Execution

Performance Tuning

Monitoring
Performance

Analysis

User

Tools

Suggestions

for user

Execution time

Fig. 4. Dynamic performance tuning

and tuned according to its current behaviour in the environment. Then, the
decisions are more accurate and consistent, due to every execution of the appli-
cation is separately tuned according to its particular execution conditions, i.e.
different input data or different conditions in the execution environment. Such
as in the previous approach, this one is suitable for iterative, long running and
resource-intensive programs. In particular, this approach is specially suitable for
applications runing in a time sharing or heterogeneous environment.

There exist different tools in this approach, such as Autopilot [10], Active
Harmony [11], PerCo [7], and MATE [9, 3]. Due to MATE is the core of this work,
we dedicate an overview of it in Sect. 3, and mention what makes it different
from the others tools.

Autopilot, automatically chooses and configures resource management algo-
rithms based on application request patterns and observed system performance.
It provides a set of performance sensors, decision procedures and policy actua-
tors. Autopilot relies on fuzzy sets and uses a set of IF-THEN production rules
that map the sensor input values to the actuator output space.

Active Harmony, permits automatic adaptation of algorithms, data dis-
tribution, and load balancing. It integrates different libraries with the same or
similar functionality. The user’s application uses such a set of libraries with dif-
ferent algorithms and tunable parameters to be changed. During runtime Active
Harmony monitors underlying library execution and manages the values of the
different parameters. The system is able to select a more efficient library and
change tunable parameters to improve the application performance.

PerCo (Performance Control), can be used for distributed applications ex-
ecuting on a heterogeneous network, such as a computational Grid. PerCo is
capable of monitoring the progress of the applications and redeploying them so
as to optimize performance. PERCO requires performance prediction capabili-
ties, such as history of previous executions.



3 MATE

MATE is an environment which provides dynamic and automatic tuning for
parallel/distributed applications. The tuning of the application comprises three
different phases: monitoring of the behaviour of the application, performance
analysis of the collected information and tuning of the application. All these
phases are continuously and automatically executed on the fly. The knowledge
about what to measure, how to evaluate the behaviour and what to change to
adjust the behaviour is based on mathematical performance models, specified by
the user in terms of the applications [3]. The main goal of MATE is to improve the
performance of an application, by adapting it to the variable current conditions
of the system. Hence, the user is exempted from manual application tuning.
MATE is composed by several components which cooperate among them to
control and to improve the execution of the application. The main components
are the following:

(i) Application Controller (AC ): it is a daemon like process which controls
the execution and the dynamic instrumentation of the individual tasks. AC
is composed of the Monitor and Tuner modules that cooperate to provide
the required functionality:
– Monitor is the module responsible for instrumenting and monitoring

the execution of an application. The monitoring is based on function
calls event tracing.

– Tuner is the module responsible for applying the tuning actions over the
application tasks. The needed changes are determined by the solutions
proposed by the Analyzer.

(ii) Dynamic Monitoring Library (DMLib): this is a shared library which is
dynamically loaded in the application tasks. It is used to perform the data
monitoring and collection.

(iii) Analyzer: this process carries out the performance analysis of the applica-
tion. Internally, the Analyzer operates through tunlets which are one of most
important components:
– Tunlets constitute the core of dynamic and automatic tuning imple-

mented by MATE, in terms of representation of knowledge. Each tunlet
defines and implements a particular tuning technique, i.e. the logic to
overcome a particular performance problem by encapsulating the knowl-
edge about the performance problem in the following terms:
(i) Measure Points, which indicate what is needed to measure in

the application to be able of evaluating its behaviour. This defi-
nition includes values of variables, parameters, function returning,
timestamps, etc.

(ii) Performance Functions, those are mathematical expressions that
determine how to evaluate the collected information in order to de-
tect bottlenecks.

(iii) Tuning Points/Actions indicating what, where and when to in-
troduce the changes in the application execution with the aim of
adapting its behaviour.



Machine 1

Machine 0

Task
1

Task
n

in
s
tr

u
m

e
n
ta

ti
o
n


DMLib

Analyzer

AC AC

Machine 2 Machine n

Task
1 AC

DMLib

ev
en

ts


tu
n
in

g
 a

ct
io

n


in
s
tr

u
m

e
n

ta
ti
o

n


e
ve

n
ts

tu
n

in
g

 a
c
ti
o

n


instrum
entation

events

tuning action

...

DMLib

Tunlet
Measure points

Performance functions

Tuning points/actions

Fig. 5. Analyzer interacting with the rest of the environment

Figure 5 illustrates the execution of an application under MATE and the
function of each module of MATE. When the execution of the application un-
der MATE starts, a particular tunlet indicates to the Analyzer what the set
of measure points required is. Analyzer forwards the requirement to every AC
(distributed over every task). In Fig. 5, these requirements of instrumentation
are represented by the dashed arrows. Then, through the execution the Analyzer
receives requested event records generated by different processes and the tunlet
is notified (the dashed-dotted arrows in the figure). The events are classified ac-
cording to their type (i.e., among the different events to be caught -such as start
of an iteration, entry to a certain function, etc.- what kind of event it is) and the
associated information stored in their attributes is used in order to update the
values of parameters in the performance model. The update is carried out (di-
rectly when some event attribute embodies the value of a performance parameter
or indirectly when the event attribute has to be temporally stored until all the
information necessary to evaluate the performance parameter is available) When
all the information of the iteration is received, extracted (from the events) and
processed, the tunlet evaluates the performance functions to determine the cur-
rent and optimal performance. If the tunlet detects a performance bottleneck, it
decides if the current performance can be improved in existing conditions. If so,
the tunlet informs the Analyzer about the possible improvement. In consequence,
the Analyzer requests the corresponding tuning actions. A request determines
what should be changed (tuning point/action/synchronization) and it is sent to
the appropriate instance of AC, and hence to the Tuner (illustrated by continu-
ous arrows). Using MATE, the run-time changes of the application, for both the



monitoring and tuning processes, are implemented via the dynamic instrumenta-
tion library DynInst [1]. Different experiments demonstrated the usefulness and
benefits of using MATE. More details about MATE, its approach and the pro-
vided benefits can be consulted in [9, 3]. In this paper we analyze the intrusion
provoked by MATE.

Even though MATE shares some characteristics with the tools presented in
Sect. 2.4, it has some particularities. On the one hand, if we consider the prepar-
ing of the application to be tuned, using MATE the monitoring is based on the
dynamic instrumentation where the application does not require to be prepared
for tuning due to measure and tuning points are inserted on the fly. In Autopi-
lot the developer must prepare the application inserting sensors and actuators
manually into the source code. In Active Harmony the mechanism is based on
the integration of different libraries with the same functionality. On the other
hand, if we consider the way in which the performance analysis is carried out,
MATE uses simple, conventional rules and performance models, whilst Autopilot
uses fuzzy logic to automate the decision-making process, Active Harmony uses
heuristic algorithms in order to describe the application behaviour, and PerCo
is based on history.

4 Overhead caused by MATE

The use of some tool to supervise and/or improve the application execution has
some inherent advantages and drawbacks. As mentioned in Sect. 2, the instru-
mentation and the monitoring processes affect the performance characteristics of
the parallel application providing a false or altered view of its own performance.
In the particular case of MATE, the tuning process constitutes another source
of overhead for the application. In consequence, it is very important to analyze
not only the benefits and the improvements obtained in the application perfor-
mance when using MATE, but it is necessary to consider the overhead caused
by the use of MATE to adapt the behaviour of the application. In this section
we document the study of the aspects related to the intrusion of MATE. To
perform the analysis we divided the intrusion in three different types, depending
on the nature of the intrusion: caused by the instrumentation, the monitoring or
the tuning process. In the next paragraphs, we first depict each kind of source
of intrusion. Secondly, we document the experiments carried out to measure the
intrussion and finally we analyze the results obtained.

4.1 Sources of Intrusion

Instrumentation. The instrumentation allows for inserting new code in the
application at certain points, with the aim of collecting information when the
execution of the application passes by such places. In the particular case of the
dynamic instrumentation, it allows also for removal of inserted code. Depending
on the moment in which the instrumentation is inserted (or removed), we can
consider two different cases:



– Initial instrumentation: in general, the bulk of the instrumentation is in-
serted when the application begins its execution, to start the collection of
data as soon as possible. Thus, when the application starts, it enters in a
phase of overhead caused by the instrumenting process, and just then con-
tinues or resumes the execution.

– Extra instrumentation: as mentioned before, some performance models re-
quires the addition (or removal) of some instrumentation, due to additional
information is necessary (or unnecessary) according to the current conditions
of the system and the behaviour of the application.

The module responsible for the instumentation insertion or removal is the Mon-
itor. DynInst is the library used by Monitor in order to carry out dynamic trace
of events. The instrumenting code can be inserted in the entry or exit of the
sending or receiving functions to monitor the network characteristics; this infor-
mation can be useful to analyze if there exist some bottleneck inherent in the
communications.

Monitoring. The monitoring process consists in detecting the instrumented
points in the application to collect the required information. As depicted in
Sect. 3, the monitoring process is based on function calls event tracing. The
monitoring process is implemented by means of the cooperation of the Monitor
module of AC’s and the DMLib. The Monitor supports the management of the
set of monitored events according to the requirements of the Analyzer, whilst the
DMLib facilitates the data collection and is responsible for registration of events.
During the instrumentation process, the Monitor creates a piece of code (called
“snippet”) which is inserted in the application when the registering of a new
event is required. In this way, when a snippet is invoked during the execution all
the attributes associated to the event are obtained, and the event is registered
via DMLib. Each event includes at least timestamp, event identifier, number
of attributes, and attributes. DMLib uses a set of buffers in order to minimize
the network overhead when sending events. The sending of events is controlled
by time to avoid excessive wait for individual events. The communication with
Analyzer is established by using an event collection low level protocol based on
TCP/IP.

Tuning. The tuning process introduces changes in the application. This could
be at level of variables or at level of functions. The overhead provoked will
fundamentally depend on the kind of tuning required. The Tuner is the mod-
ule responsible for applying the tuning actions over the application tasks. The
needed changes are determined by the solutions proposed by the Analyzer. The
Tuner modifies the application execution via DynInst, by modifying the memory
associated to the application. The Tuner provides an API which defines the set
of tuning actions that the Analyzer can require:

– LoadLibrary : this loads a certain library in a process. This allows Analyzer
to load additional code required to the tuning process.



– SetVariableValue: the value of a certain variable in a determined process can
be modified.

– ReplaceFunction: this allows for replacing every call to a certain function for
a call to another function.

– InsertFunctionCall : a new function call with its attributes can be inserted.
– OneTimeFunctionCall : it allows for calling a certain function once during

the execution.
– RemoveFunctionCall : every call to a certain function is eliminated.
– FunctionParamChange: the value of a parameter can be changed in the entry

of a function, before the body of the function is being executed.

Some points or actions in the application can be changed without any syn-
chronization, due to they are used at specific points and are out of inconsistencies
through a specific iteration. However, some values can only be changed at certain
points of execution to ensure the coherence of the value along the iteration. Just
for providing an example, we can consider the variable used in a Master/Worker
application to control the current number of workers (named “nw”). Supose that
the master process uses nw as follows:
//Master process
main()
{ ...
nw=initial amount of workers
while(there are data to process)
{ ...

divide the total data into nw tasks
for(i=0;i<nw;i++)

send 1 task to worker i
for(i=0;i<nw;i++)

receive answer
put together the answers
...

}
...

}

“nw” is used to decide the amount of parts in which the total work will be
divided and how many sending and receptions will be executed. Clearly, the
value of nw must be the same along the iteration to avoid anomalies in the
execution. Supose, for instance, the following situation:

1. initially nw=16, then the master splits the work in 16 tasks and send them
to the 16 workers

2. the value of nw is changed into 20 according to the evaluation of the behav-
iour of the application in the previous iteration

3. the master waits for 20 answers

In this case, there is no coherence among the value of nw considered at the
different points of the iteration. Such incoherences provoke an abnormal or un-
expected behaviour in the application, whose consequences could be disastrous.
In this particular example, the master process becomes blocked waiting for the
answers which never will be received.

In order to avoid any inconsistency, the previous problem can be solved in
two ways:



– by synchronizing the modifications: in this case, the change of the value of
nw can be made exactly before the next iteration starts. Then, a breakpoint
should be inserted to stop the execution in such a point, then the value is
changed and the execution is resumed. In this way, the value of nw will be
established through the iteration.

– by using an auxiliary variable: this is perhaps the more pragmatic approach
to introduce modifications, due to it does not require an additional stopping
and resuming of the execution to insert a breakpoint. However, in this case
the cooperation of the user is required in case a new variable has to be
added in the application. In the example, we could use an auxiliary variable
nworkers as follows:

//Master process
main()
{ ...

nworkers=initial amount of workers
while(there are data to process)
{ ...
nw=nworkers
divide the total data into nw tasks
for(i=0;i<nw;i++)

send 1 task to worker i
for(i=0;i<nw;i++)

receive answer
put together the answers
...

}
...

}

In such case, the tuning point will be nworkers, then even though its value is changed along
the iteration, the value of nw will change just when the next iteration starts.

Tuning with or without synchronization clearly presents advantages and dis-
advantages related to the involvement of the user and the time wasted in applying
the tuning action.

4.2 Experimental Measurements

In this section we present the results obtained from the experiments carried out
to measure the overhead provoked by each kind of source of intrusion or overhead.
To conduct the experiments, we selected a Master/Worker application, given that
such parallel algorithm model is widely used to implement different models in
the scientific field thanks to its widely spread use and flexibility. In particular, we
have used a 2D N-Body implementation, which calculates the new position of N
particles in each iteration, according to the mutual interaction among them. The
experiments were conducted on a homogeneous cluster composed by Processors
PENTIUM IV 3.0 Ghz, 1 GB DDR-SDRAM 400 Mhz, Ethernet card Broadcom
NetXtreme Gigabit and Fedora Core 4 as operating system. All the machines
were configured to use NFS (Network File System) based on one server with the
same characteristics as the cluster machines. Each measurement was repeated
thirty times, and the average has been calculated. The time wasted to insert the
instrumentation to catch an event is about 0,3 ms. In the case of the monitoring,



the capture and sending of an event takes about 0,8 ms. On its hand, the time
wasted to execute some tuning action varies from 0,25 to 1700 ms, depending on
the nature of the action. The time wasted when a breakpoint has to be inserted
before applying the tuning action is 1,539 seconds in average. Table 1 presents
in more details the results obtained from the experimentation, where the time
is expressed in miliseconds and represents the average time for each case.

Table 1. Average Time wasted in the different tuning actions, in ms

SOURCE KIND TIME

Instrumentation Initial 0,284

Extra 0,284

Monitoring 0,844

Tuning Set Variable Value 1,1858

Replace Function 2,0078

Insert Function Call 1,308

Remove Function Call 0,254

Function Parameter Change 0,4007

On time function call 1678,286

4.3 Analysis of the Results

From the obtained results documented in 4.2, we can analyze the impact of each
kind of source of intrusion along the complete execution of the application. In
the analysis we analyze the results in terms of absolute overhead rather than
in terms of percentages of improvement or overhead, since percentages are in-
herent to the total execution time of each particular application and execution
environment configuration. In addition, along with the analysis we intend to de-
fine an expression to estimate the overhead caused by MATE, according to each
particular application and performance model.

With respect to instrumentation, the time consumed in initial instrumen-
tation could be considerable given that each performance model involve several
measure points which are obtained by means of events (i.e. by capturing the cor-
responding values at the entry or exit of some function), and the instrumentation
of each particular event takes about 300 microseconds). However, the overhead
caused by the initial instrumentation is only suffered at the start-up of the appli-
cation and is disguised as the execution of the applications progresses. Remind in
general we are considering big applications, which could execute several minutes



or hours. Thus, the time taken by initialization (in order of miliseconds) is hid-
den by the total execution time (in order of minutes or hours). With respect to
monitoring, note that the overhead is proportional to the amount of events to
be caught and the number of times that each event occurs through the iteration.
The monitoring actions are executed along with each iteration of the application,
whenever the corresponding instrumentation is still in the application. Captur-
ing each event takes about 850 microseconds. Therefore, we can consider that
the monitoring process is which introduces a continuous overhead in the ap-
plication execution, different from instrumenting and tuning (remind that the
instrumenting process in general causes the major overhead just at the start-up
of the application and eventually when some additional instrumentation has to
be inserted or removed). Finally, with respect to the tuning process, it introduces
overhead as the conditions of the environment change and some adaptation in
the application is necessary; thus, if the conditions are not changing along every
iteration not too many tuning actions will be required and in consequence not
too much time will be wasted in tuning. The time wasted could vary among 250
microseconds and 1.5 seconds depending on the complexity of the tuning action.

Considering the previous analysis, we can estimate the intrusion caused by
MATE using the following expression:

TInstr(e1...en) + TMon(e1...en) + TTun(app) . (1)

where TMon(e1..en) =
∑n

i=1 TMonitor(ei) ∗Occurr(ei). TInstr is the time
wasted to insert the instrumentation in the application to catch the correspond-
ing n events; TMon represents the time wasted to catch and send the events, and
TTun represents the time used to tune the application.

In the particular case of TMon, the individual time wasted to catch an event
(TMonitor) has to be multiplied by the amount of times the event takes place
(Ocurr). This is due to some events are caught several times -such in a itera-
tive function- along the iteration. Sometimes, the occurrence of some particular
events is unknown due to it depends on the execution sequence, i.e. it could
depends on conditional sentences.

TTun is the more uncertain time to be estimated. In other words, we can
predict how many times will be wasted in effect the tuning actions when required,
but we cannot predict when nor how many times the tuning actions will be
required, precisely because it depends on the dynamic conditions of the systems.

5 Conclusions

Parallel systems provide the computational power required by applications that
involve intensive calculations. However, the parallel paradigm presents some per-
formance bottlenecks inherent to the benefits of using multiple resources. Differ-
ent approaches and tools assist the users to solve and overcome the bottlenecks.
Each tool provide the help in a different way. However, the supervision of the
applications carried out by the performance tools introduces some overhead in



the execution. We studied the particular case of MATE, a Monitoring, Analy-
sis and Tuning Environment which implements dynamic and automatic tuning
based on mathematical performance models. From the experiments, we con-
cluded that even though MATE provokes a certain overhead from the order of
microseconds to miliseconds (against the long lasting HPC applications), the
cost of such negative effects over the application is not significant in comparison
to the benefits obtained along with the execution of the complete application,
since the successive tuning decisions allow for a better and more efficient use of
the involved resources. This makes MATE specially suitable for dynamic paral-
lel applications. We also defined an expression to calculate a priori the overhead
caused by MATE according to the measurements and tuning actions involved
by the performance model under consideration.

References

1. Buck, B., Hollingsworth, J.: An API for Runtime Code Patching. University
of Maryland, Computer Science Department. Journal of High Performance
Computing Applications (2000)

2. Buyya, R. et al: High Performance Cluster Computing - Architectures and
Systems (Volume 1). Prentice Hall (1999)

3. Caymes-Scutari, P., Morajko, A., Margalef, T., Luque, E.: Automatic Gen-
eration of Dynamic Tuning Techniques, LNCS 4641 Euro-Par 2007 Parallel
Processing, 13–22 (2007)

4. Dongarra, J., Foster, I., Fox, G., Gropp, W., Kennedy, K., Torczon, L., White,
A.: Sourcebook of parallel computing. Morgan Kaufmann Publishers (2003)

5. Espinosa, A., Margalef, T., Luque, E.: Automatic Detection of Parallel Pro-
gram Performance Problems. Lecture Notes in Computer Science, vol. 1573,
pp. 365–377, Springer-Verlag (1998)

6. Krishnan, S., Kale, L. V.: Automating Parallel Runtime Optimizations Using
Post-Mortem Analysis. International Conference on Supercomputing, 221–228
(1996)

7. Mayes, K., Lujan, M., Riley, G., Chin, J., Coveney, P., Gurd, J.: Towards
Performance Control on the Grid. Philosophical Transactions of the Royal
Society of London Series A, Vol. 363, No. 1833, 1793–1806 (2005)

8. Miller, B., Callaghan, M., Cargille, J., Hollingsworth, J., Irvin, R., Karavanic,
K., Kunchithapadam, K., Newhall, T.: The Paradyn Parallel Performance Mea-
surement Tool. IEEE Computer vol. 28, 37–46 (1995)

9. Morajko, A., Caymes-Scutari, P., Margalef, T., Luque, E.: MATE: Monitor-
ing, Analysis and Tuning Environment for Parallel/Distributed Applications.
Concurrency and Computation: Practice and Experience, 19/11, 1517–1531
(2007)

10. Ribrel, R., Vetter, J., Simitci, H., Reed, D.: Autopilot: Adaptive Control of
Distributed Applications High Performance Distributed Computing 1998, 172–
179 (1998)

11. Tapus, C., Chung, I-H., Hollingsworth, J.: Active Harmony: Towards Auto-
mated Performance Tuning. High Performance Networking and Computing
2003, 1–11 (2003)


