
Sync/Async Web Search Engines modelled with
TCPN

Veronica Gil-Costa and Marcela Printista

Computing Department, National University of San Luis
Ejrcito de los Andes 950, San Luis , Argentina

Contact e-mail: {gvcosta,mprinti}@unsl.edu.ar

Abstract. The development of distributed systems is particularly chal-
lenging because these systems possess concurrency and non-determinism.
One way to approach the challenge of developing modern systems is to
build a model of the systems. In this paper we model a design of Web
Parallel Search Engine (WPSE) using an extension of Petri Net, named
Time Colored Petri Nets (TCPN), for a synchronous (Sync) and an asyn-
chronous (Async) communication system using a document partition in-
dex . The goal is to simulate the execution of Q queries asking for service
at the WPSE for both communication modes. In order to obtain an ab-
straction of the query processing cost, we take advantage of the TCPN
features and modify them in order to perform an performance evaluation
independent of the particular hardware platform used.

1 Introduction

Web search systems like Google or Yahoo! provides service to millions of people
accessing the Web and searching for information. To speed-up queries answers
and to obtain a reasonable response time per query, search engine uses cluster
of high performance computers (HPC). Information recovered from the Web is
stored as web pages in a repository and the system uses an index to reduce the
search cost (in meaning of time and resources use). The index data structure
selected in most search engines is the Inverted File, which is composed as a set
of relevant terms ti found in the pages with a posting list [ti, < dj , fti,dj >]. The
posting list of each term has the information required to identify the document dj

where the term appears and the frequency fti,dj of the term in that document.
The frequency is used during the search phase to obtain the relevance of the
document for a query.

There are two main schemes to perform the parallel query searches: document
partition and term partition. In the first one all documents are distributed among
a set of P processors, and then each one builds its own inverted file index using
the local documents. Therefore, if the collection has N documents and T terms,
each processor will hold N/P documents and the inverted file will have T terms.
In the term partitioned scheme, we build one sequential index and then we
distribute each term with its whole posting list among processors. So in this
case each processor will have N documents but only T/P terms. There are

many variants of these strategies like [14, 16, 24], but the main discussion remains
between the term and the document partitioned schemes. Some papers presents
good results for the document partitioned scheme while others argue that the
term partitions is more scalable. What is out of discussion is that the document
partitioned has the advantage of a very cheep construction and upload, because
no communication is required during these process.

Most implementations of distributed inverted indexes reported so far are
based on the message passing approach to parallel computing in which we can
even see combinations of multi-threaded and computation/communication over-
lapped systems. We believe that under such heterogeneous forms of parallel
computing it is quite risky to make reasonable claims about comparative per-
formance as it is difficult to reproduce the same experimental conditions. For
example, the execution of the system is dependent on the particular state of
the machine and its fluctuations. On the other hand, artefacts such as threads
are potential sources of overheads that can produce unpredictable outcomes in
terms of running time. Yet another source of unpredictable behaviour can be
the accesses to disk used to retrieve the posting lists. In fact, the difficulty of
comparing these kind of systems is discussed in [15].

Search operations are performed upon a cluster of machines in order to re-
duce the algorithm execution time. In the literature most papers presents asyn-
chronous algorithms like [1, 10, 14, 16, 19, 23, 25] where queries are solved using
a set of machines but there is no synchronization among them and they do not
share the global information system state. In this case, the parallel algorithms
are implemented using the pvm [4] or the mpi [20]library. Some others researches
like [6, 12, 13] use a synchronous parallel model where it is possible to manage
fairly the resource use. In this case all processors must synchronize at a certain
time before they continue with their operations. A synchronous system performs
well under low query traffic, but when the traffic is high enough these systems
tends to loose performance, because it has to pay the latency network cost for
each message. Actually Web searches overcome this problem using hardware re-
dundancy, but this solution has no future in terms of algorithms, due to the
Web size duplicates every eight months. On the other hand, synchronous sys-
tems tends to perform better with a high query traffic, because only one message
is sent per processor and the latency network cost is lower. Some experiments
proving this claims are presented in [12, 11, 2, 5].

In this paper we present a design of Web Parallel Search Engine (WPSE)
using a Petri Net [18] for a synchronous (Sync) and an asynchronous (Async)
system using a document-partition scheme and we compare them under the same
rules. So we can simulate the execution of Q queries asking for service at the
search engine for both modes of communication. The novelty of this paper is
based in the use of an extension of Petri Nets named Time Colored Petri Nets
(TCPN) [7] to model a parallel problem discussed for many years and we present
a modification to this network model tool in order to obtain our goal.

This paper is organized as follows. Section 2 presents and describes TCPNs.
Section 3 presents the query processing algorithm. Section 4 applies TCPNs to

model and to obtain the cost of a synchronous web search engine and Section
5 for the asynchronous communication mode. Finally, Section 6 presents the
conclusions and futures works.

2 Petri Nets

Petri Nets, developed in the early 1960s by Carl A. Petri to model concurrent
computer system operations, most widely accepted and well-known graphic ap-
proaches in modeling discrete event systems (DESs) including various discrete
manufacturing systems. Actually, PNs are also supported by sophisticated math-
ematics.

In the use of PNs for modelling real systems, several authors have found
convenient to introduce special constructs either for making the model repre-
sentation more compact in a given application or for extending the modelling
power of the PN formalism. Among extensions to PNs, timed coloured Petri
Nets (TCPNs) [7, 8] is one of high level PNs which has advantages over basic
PNs in making the model of a DES much more compact and concise. This is
gained by introducing colours to distinguish among tokens presenting different
entities (e.g. parts to be processed) and using additional logic (arc expression
functions) to control token flows [9].

In TCPNs, a global clock is introduced for timing, and the value of the clock
is called model time. A time stamp is defined as the earliest model time at which
the token carrying it can be used for enabling a transition TCPNs are based on
semantics made by Jensen [1,2]. However, some of these semantics are simplified
when TCPNs are used for modelling manufacturing systems as shown in [4]. The
TCPN model of the system can be formally described by TCPN semantics as
follows:

CPN = (Σ, P, T, A, C, F, I, O, M0) (1)

where P = {p1, . . . , pk} is the set of places (non empty and finite); T =
{t1, . . . , tk) is the set of transitions (non empty and finite); A is the finite set of
arcs. Σ = {A0, . . . , Am, e} is the finite set of non-empty types, also called colour
sets, where Am, denotes the states of part A, while e represents that a resource
is idle and available. C = P → Σ is a colour function. They specify attributes of
tokens in a specific place. I and O are a sets of input and output arcs. M0 are a
set of initial markings. F is a guard function. It is defined from T into boolean
functions, that is, their evaluations are either TRUE (gate is open) or FALSE
(gate is closed) [3]. They prevent tokens of specific colours from flowing through
a transition. Given a marking M , a PN transition is enabled if, beside the nor-
mal enabling requirements, the conditioning function is true. The conditioning
functions can be very effective in reducing the graphical complexity of a PN,
even if they do not extend the modelling power with respect to inhibitor arcs or
priority levels. In a TCPN, time can be associated to places or to transitions. In
this work we apply the second option.

In this paper we take advantage of the TCPN features and we modify them
so the time associated to each transition is deterministic and we represent it as

an abstraction of the query processing cost. The cost assigned to each transi-
tion depends exclusively in the number of tokens involves. Therefore we adapt
the TCPN representation in order to perform an evaluation independent of the
particular hardware platform used.

3 Query Processing

We adapt the Time Coloured Petri Nets [22], to analyze the asymptotic cost
of processing Q queries using a document partitioned index in a Web search
engine. Queries arrive to the processors from a receptionist machine that is
called broker. Different realizations of this general scheme have been proposed
in the literature. Some are unsuitable for comparison experiments as they hide
costs such as communication between the broker and the processors or keep
at the broker side part of the ranking cost. Also, in some cases is unclear as
to whether the broadcast required by the document partitioning approach is
implemented using efficient algorithms. Others interleave posting list fetching
and ranking across processors but their cost is equivalent to the strategy we use
in this paper.

An innovation presented in [11] is to de-couple the actions of fetching lists
from the index and ranking sets of documents by distributing the workload in
a round-robin manner. Each processor has a dual role at all times: fetcher and
ranker. In the first role the processor is fetching posting lists from its local index
for some query. In the second role, the processor is merging lists to compute
the ranking associated to another query. The broker machine is in charge of
assigning a processor to be the ranker for each query in a circular manner. The
ranker then broadcasts the query to P fetchers in the cluster, where P is the
number of processors. Each ranker returns later the corresponding answers to the
broker. Every query is then processed using two major steps: the first one consists
on each fetcher sending a K/P -sized piece of every posting list involved in the
received query to its ranker processor. The size K/P will be chosen such that the
ranker gets about K documents in total. In the second step, the ranker performs
the actual ranking of documents and, if necessary, it asks for additional K/P -
sized pieces to the fetchers in order to produce the K best ranked documents
that are passed to the broker as the query results. In fact, the number of answers
shown to the user can be less than K and we have find that in practice we need
K to be less than twice the number of final answers.

We assume a situation in which the query arrival rate in the broker is large
enough to let the broker distribute Q P queries onto the P processors. The spe-
cific way we organize fetching and ranking along with its bulk-synchronous real-
ization allows to compare in a fair manner the document partitioned approach
with others strategies

We use the vector method for performing the ranking along with the fil-
tering technique proposed in [17]. Consequently, the posting lists are sorted by
frequency in descending order and we study cases in which the posting lists are
intersected before the ranking to determine the documents containing all of the

query terms, as is typical in current search engines, as well as cases in which this
operation is not required.

while(true)
{
//Receive Messages

msg ← queue in.front();
switch (msg → type)
{

case MSG BROKER :
broadcast(msg);

break;

case MSG FETCHING :
Fetch Inverted List(msg,new msg);

Send(new msg);

break;

case MSG RANKING :
if (wait Results(msg))

{
Ranking(msg,new msg);

Send(new msg);

}
break;

}
}

Fig. 1. Queries processing algorithm.

4 Synchronous Query Processing

For synchronous query processing we use the bulk synchronous model of parallel
computing (BSP) and its cost model [21]. In BSP the computation is organized
as a sequence of supersteps. During a superstep, the processors may perform
computations on local data and/or send messages to other processors. The mes-
sages are available for processing at their destinations by the next superstep,
and each superstep is ended with the barrier synchronization of the processors.
The underlying communication library ensures that all messages are available at
their destinations before starting the next superstep.

A key issue in stable performance is to ensure that each query is given a fair
share of the hardware resources in a round-robin manner. To support the round-
robin principle we divide query processing in “atoms” of size K, where K is the
number of documents delivered to the users. These atoms are scheduled in a
round-robin manner across supersteps and processors. Namely, queries are given
K sized quanta of processor time, communication network and disk accesses.

These quanta are granted sequentially to queries during supersteps. New queries
are injected as soon as the same number of current queries have finished. In the
Async mode, the round-robin principle is emulated by performing proper thread
scheduling at each processor to grant each active query its respective quantum
of execution in a circular manner.

Figure 2 shows a TCPN for a cluster with three processors. We assume a
situation of high query traffic and each processor performs a sequence of oper-
ations depending on the type of the token. There are three kinds of tokens: x
represents a broadcast token, y represents a fetching token, and z represents a
ranking token. Function f() indicates the type and number of token received by
each state or transition. With f(x) we represent ”the type of a token must be x”.
To simplify the figure, we only show the value of f() for the input of transition.
Transitions t1, t2 and t3 represent the operation of extracting messages from the
input queue in each processor, and place the token in the correct state. Tran-
sition t4 involves the message generation operation transforming tokens of type
x into y tokens (these messages will be broadcasted). Transition t5 represents
the fetching operation transforming tokens of type y into z tokens. Transition
t6 represents the ranking operation, and if the query requires another iteration,
the transition transforms the z token into a y token. Otherwise, the transition
transforms the token into an m token that will be consumed by transition t8.
transition t7 represents the synchronization barrier among processors. At this
point, all messages are packaged and each processor sends only one message
to each other processor (including itself) through the network. Notice that t7
is enabled only when there are some tokens in p5, p6 and p7, but all tokens in
p2, p3 and p4 are consumed. This last condition is establish by the inhibitor arcs.
Therefore, using a synchronous communication mode, we have to complete all
broadcast, fetching and rankings operations before to continue with the next
superstep.

As we said before, in this work me modify the concept of a TCPN associating
a cost to each transition depending on the number of queries been processed in-
stead of a real time. The number of queries is represented by the tokens available
in the TCPN network. Figure 3 shows the processing of Q queries in one proces-
sor across several supersteps using the TCPN (the same operations are processed
by all processors). We assume that q = 2 queries are injected per superstep so we
add a new transition t0 to represent this action. In the first superstep, transition
t7 only requires tokens from place p5. These restriction is given by the function
f(y) > 0, f(x) >= 0 and f(z) >= 0. From the third superstep on, we assume a
situation with high work load and t7 requires tokens of type y placed in p5 and
p7, and at least one token of type z placed in p6.

The elements composing the TCPN for a Sync web search engine are the
following:

∑
= {x, y, z, m}

P = {p1, p2, p3, p4, p5, p6, p7}
T = {t1, t2, t3, t4, t5, t6, t7, t8}
M1 = {q, 0, 0, 0, 0, 0, 0}

f(m)>0

f(x)>0 f(y)>0 f(z)>0

x

x

y

xy

x y y z

xyz

x

f(x)>0

P1

P2 P4

P5

P3

f(y)>0 f(y)>0

y z yy z

f(z)>0

Process Messages

Receive Messages

Send Messages
f(y)>0

P6 P7

+

Global Sync

t8
f(m)>0 f(m)>0

z yy
m

m m

y
z

x y z x

y

zzy
x x y

y
z

z yx x z
z

y x
x

y y
z

z

y z z
y y z

f(z)>0

t1

f(z)>0
f(y)>0

t2 t3

t5 t6

Cluster of Processors

t7

t4

f(y)>0

f(x)>0 f(y)>0 f(z)>0

f(y)>0

 f(x)>0 f(y)>0 f(z)>0

f(z)>0

f(y)>0

Broadcast Fetching Ranking

P0 P1 P2

Fig. 2. Cluster view of the queries processing operation with three processors and a
global barrier synchronization.

C(p1) = {x, y, z} C(p2) = {x} C(p3) = {y}
C(p4) = {z} C(p5) = {y} C(p6) = {z}
C(p7) = {y, m}
C(t1) = {x} C(t2) = = {y} C(t3) = {z}
C(t4) = {x} C(t5) = {y} C(t6) = {z}
C(t7) = {z, y} C(t8) = {m}
I(t1) = {p1} I(t2) = {p1} I(t3) = {p1}
I(t4) = {p2} I(t5) = {p3} I(t6) = {p4}
I(t7) = {p5, p6, p7} I(t8) = {p7}
O(t1) = {p2} O(t2) = {p3} O(t3) = {p4}
O(t4) = {p5} O(t5) = {p6} O(t6) = {p7}
O(t7) = {p1} O(t8) = {}

Figure 4 shows the analytical cost of processing q new queries per superstep
using the TCPN presented in Figure 3. The analysis is shown for one processor
until N supersteps are executed and the work load in the system is big enough.
Due to all processors perform the same sequence of operations we present the
analysis for only one processor. N is the number of iterations or supersteps in
the BSP model, P is the number of processors in the server, q is the number of
queries injected per superstep (that is why always the cost of t0 = q), K

P is the
inverted file size (number of documents with the associated frequency) retrieved
per query, and logP + l is the synchronization cost plus the latency cost of the
network. We assume that every time a ranking operation is performed half of
the queries q/2 requires a new iteration and the other half finish. Notice that
only in t7 messages are send though the network and we have to pay a latency
at most P − fold.

x

t0 t0 t0

x

y

xy

x y y z

zyz

x

f(x)>0

f(x)>0 f(y)>0 f(z)>0

P1

P2 P4

P5

P3

f(y)>0 f(y)>0

y z yy z

f(z)>0

Process Messages

Receive Messages

Send Messages
f(y)>0

P6 P7

+

Global Sync

t8
f(m)>0 f(m)>0 f(m)>0

m

x y x

y

x x
y x y z

y z y z

t1

f(z)>0
f(y)>0

t2 t3

t5 t6

SS1 SS2 SS3...SSN

One Processor

t7

t4

f(x)>0 f(y)>0 f(z)>0 f(x)>0 f(y)>0 f(z)>0

f(z)>0

f(y)>0

Broadcast Fetching Ranking

f(y)>=0

f(z)>=0

f(y)>=0

x

x

y

Fig. 3. Superstep view of the query processing operation in one processor.

The cost of t7 is given by the message size plus the synchronization cost
(logP) plus the network latency cost which is Pl because we send only one
message per processor per superstep. In each superstep SSi, F represents the
fetching operation and R represents the ranking operation. Finally, it is impor-
tant to explain that transition t3 always receives the fetching results from P
processors as we are modeling the document partition inverted file, and therefor
transition t6 is affected directly by t3 cost. Therefore, the final cost of processing
a batch of queries in the Sync Model is given by:

CSM = q + q
N

2
(1 + K +

K

P
+ P) +

N

2
qKF +

N

2
KR + qP + logP + Pl (2)

This analysis is obtained using an initial marking M1 = {q, 0, 0, 0, 0, 0, 0}
with q elements of type x placed in p1, and executing the Petri Net designed
through a Sync communication model. For that, in the first superstep, the cost
of t0 = q (always send q new queries). The cost of extracting q messages from the
input queue is t1 = q. In this first superstep, t2 = t3 = 0 because there are no
fetching or ranking kind of message and therefore t5 = t6 = t8 = 0. The cost of
generating P message for each query is t4 = qP . Finally the t7 is given by the size
of message being send through the network (qP), plus the synchronization cost
(log P), plus the latency cost of sending P messages. This analysis is repeated
for the next supersteps.

Also, we can obtain the reachability graph GR(SM) as shown in Figure 5.
Such reachability graph contains a node for each possible state and an arc for
each possible state change.

SS1 SS2 SS3

t0 = q t0 = q t0 = q

t1 = q t1 = q t1 = q

t2 = 0 t2 = qP t2 = q P

t3 = 0 t3 = 0 t3 = qPK
P

t4 = qP t4 = qP t4 = qP

t5 = 0 t5 = qPK
P
F t5 = qPK

P
F

t6 = 0 t6 = 0 t6 = qPK
P
R

t7 = qP+logP+Pl t7 = qP+qK+logP+Pl t7 = qP+qK+ q
2
P+logP+Pl

t8 = 0 t8 = 0 t8 = q
2

SS4 SS5 SS6

t0 = q t0 = q t0 = q

t1 = q t1 = q t1 = q

t2 = P(q+ q
2
) t2 = P(q+ q

2
) t2 = 2qP

t3 = qPK
P

t3 = (q+ q
2
)PK

P
t3 = P(q+ q

2
)K

P

t4 = qP t4 = qP t4 = qP

t5 = P(q+ q
2
)K

P
F t5 = P(q+ q

2
)K

P
F t5 = 2qPK

P
F

t6 = qPK
P
R t6 = P(q+ q

2
)K

P
R t6 = P(q+ q

2
)K

P
R

t7 = qP+(q+ q
2
)K t7 = qP+(q+ q

2
)K+qP t7 = qP+2qK+2qP

+ q
2
P+logP+Pl +logP+Pl +logP+Pl

t8 = q
2

t8 = q
2

t8 = q
2

SS7 . . . SSN

t0 = q . . . t0 = q

t1 = q . . . t1 = q

t2 = 2qP . . . t2 ≈ N
2
qP

t3 = 2qPK
P

. . . t3 ≈ N
2
qPK

P

t4 = qP . . . t4 = qP

t5 = 2qPK
P
F . . . t5 ≈ N

2
qPK

P
F

t6 = 2qPK
P
R . . . t6 ≈ N

2
qPK

P
R

t7 = qP+2qK+(q+ q
2
)P . . . t7 ≈ qP+ N

2
qK+ N

2
qP

+logP+Pl . . . +logP+Pl

t8 = q
2

. . . t8 = q
2

Fig. 4. Analytical cost for executing Q queries with a Sync Web searcher.

t5

(w1(x)+w2(y)+w3(z),0,0,0,0,0,0)

(0,w1(x),w2(y),w3(z),0,0,0)

(0,0,w2(y),w3(z),w1(y),0,0) (0,w1(x),0,w3(z),0,w2(z),0) (0,w1(x),w2(y),0,0,0,w3(y))

t1

t3t2 t4

t3 t4

t4

(0,0,0,w3(z),w1(y),w2(z),0) (0,0,w2(y),0,w1(y),0,w3(y)) (0,0,0,w3(z),w1(y),w2(z),0) (0,w1(x),0,0,0,w2(z),w3(y))

t2
t4

t3 t4

(0,0,w2(y),0,w1(y),0,w3(y)) (0,w1(x),0,0,0,w2(z),w3(y))

t2
t3

(0,0,0,0,w1(y),w2(z),w3(y))

t2 t3
t2

Fig. 5. Reachability graph for the TCPN represented in Figure 3. Symbols ω1, ω2 and
ω3 an arbitrary number of tokens x, y y z.

5 Asynchronous Query Processing

In the Asynchronous communication mode, queries are solve using the same
scheme presented in Section 3 but without a periodic synchronization after each
iteration. Therefore, processors process queries, send and receive messages re-
gardless others processors and without blocking themselves.

Figure 6 shows the design obtained for an Async Web search engine using a
TCPN. Operations performed by the Async transition are the same as described
for the Sync communication mode. And the elements of the Async TCPN are:

∑
= {x, y, z, m}

P = {p1, p2, p3, p4, p5}
T = {t1, t2, t3, t4, t5, t6, t7, t8}
M1 = {q, 0, 0, 0, 0}

C(p1) = {x, y, z} C(p2) = {x} C(p3) = {y}
C(p4) = {z} C(p5) = {y, z, m}
C(t1) = {x} C(t2) = {y} C(t3) = {z}
C(t4) = {x} C(t5) = {y} C(t6) = {z}
C(t7) = {y, z} C(t8) = {m} C(t0) = {}
I(t1) = {p1} I(t2) = {p1} I(t3) = {p1}
I(t4) = {p2} I(t5) = {p3} I(t6) = {p4}
I(t7) = {p5} I(t8) = {p5} I(t0) = {}
O(t1) = {p2} O(t2) = {p3} O(t3) = {p4}
O(t4) = {p5} O(t5) = {p5} O(t6) = {p5}
O(t7) = {p1} O(t8) = {} O(t0) = {p1}

P5

x

x

xy

x y y z

xyz

x

t4 t5
f(x)>0 f(y)>0 f(z)>0

f(x)>0

f(x)>0 f(y)>0 f(z)>0f(x)>0 f(y)>0 f(z)>0
t4t4 t5t5 t6t6 t6

f(x)>0

 P2 P3 P4

Process Messages

Receive Messages

P5

t7

I1 I2 I3.......IM

*={x,y,z}

f(*) >=0

t7 t7
Send Messages

Broadcast Search Ranking

t1
t2 t3f(x)>0

f(y>0)

P1

f(z)>0x

t0 t0 t0

x

yy

x

x

yyz

x

x y

y

yyzz

t8

f(m)>0

t8 t8

f(m)>0
f(m)>0

m

t1 t1t2 t3 t2 t3

f(z)>0f(z)>0
 f(y)>0 f(y)>0

P5

Fig. 6. Asynchronous query processing using a TCPN.

We perform a cost analysis using the TCPN and with an initial marking
M1 = {q, 0, 0, 0, 0} with q elements of type x placed in p1 as shown in Figure
7. In this analysis we assume that all processors have the same process speed
and they have to deal with a high query traffic (q new queries are injected per
iteration). The reachability graph GR(AM) is obtained in a similar way as we
shown in Figure 5.

In the Async mode each message is sent without waiting for a barrier, so
each time a message is sent though the network we have to pay a latency cost l.
We have found that for high query traffic the Async communication mode has
to pay a high latency cost [12], and it can significantly affect the performance of
the system. So assuming that the ranking operation is the most expensive one,
we can obtain the cost of processing a batch of q queries as shown in Figure 7.

And the asymptotic cost is given in equation 3. In this equation we can
see how the network latency affect the efficiency of the Async communication
model, and comparing it with the Sync mode, the cost is highly dependent on
the number of active queries in the system waiting for being completed.

CAM = q+q
N

2
(1+K+

K

P
+P)+

N

2
qKF+

N

2
KR+qP+(qP +

N

2
q+q

N

2
P)l (3)

6 Conclusions

To cope with the complexity of current web system, it is crucial to provide
methods that enable the studying of central parts of the system designs prior
to implementation. In this paper we have used TCPN to model a Web Parallel
Search Engine and analyse two communication system. The TCPN model uses
a new interpretation of T (time) where we represent the time associated to each

I1 I2 I3

t0 = q t0 = q t0 = q

t1 = q t1 = q t1 = q

t2 = 0 t2 = qP t2 = qP

t3 = 0 t3 = 0 t3 = qPK
P

t4 = qP t4 = qP t4 = qP

t5 = 0 t5 = qPK
P
F t5 = qPK

P
F

t6 = 0 t6 = 0 t6 = qPK
P
R

t7 = qP+qPl t7 = qP+qK+q(P+1)l t7 = qP+qK + q
2
P+(qP+q+ q

2
P)l

t8 = 0 t8 = 0 t8 = q
2

I4 . . . IN

t0 = q . . . t0 = q

t1 = q . . . t1 = q

t2 = P(q+ q
2
) . . . t2 ≈ N

2
qP

t3 = qPK
P

. . . t3 ≈ N
2
qPK

P

t4 = qP . . . t4 = qP

t5 = (q+ q
2
)K

P
PF . . . t5 ≈ N

2
qPK

P
F

t6 = qPK
P
R . . . t6 ≈ N

2
qPK

P
R

t7 = qP+(q+ q
2
)K+ q

2
P+ . . . t7 = qP+N

2
qK +N

2
qP+

(qP+q+ q
2
+ 1

2
P)l . . . (qP+N

2
q+N

2
qP)l

t8 = q
3

. . . t8 = q
2

Fig. 7. Analytical cost for executing Q queries with a Async Web searcher.

transition as an abstraction of the query processing cost. The model based on
TCPN proposed in this work evidences the involved cost for each communication
mode. In the Sync communication mode it is clear that when the query traffic
is low, the synchronization cost is higher and therefore the performance will be
lower. On the other hand, when the Async communication mode is used and the
query traffic is high it has to pay a higher cost due to the network latencies.

Acknowledgments
We wish to thank the Universidad Nacional de San Luis, the ANPCYT and

the CONICET from which we receive continuous support.

References

1. C. Badue, R. Baeza-Yates, B. Ribeiro, and N. Ziviani. Distributed query process-
ing using partitioned inverted files. Eighth Symposium on String Processing and
Information Retrieval (SPIRE’01), pages 10–20, Nov. 2001.

2. G. Costa, M. Marin, and N. Reyes. An empirical evaluation of a distributed
clustering-based index for metric space databases. In International Workshop
on Similarity Search and Applications (SISAP 2008), IEEE-CS Press, Cancun,
Mexico, April 11-12, 2008.

3. J. B. Dugan, A. Bobbio, G. Ciardo, and K. Trivedi. The design of a unified
package for the solution of stochastic petri net models. In Proceedings International
Workshop on Timed Petri Nets, Torino (Italy) IEEE Comp Soc, pages 6–13, 1985.

4. A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Mancheck, and V. Sunderam.
PVM: Parallel Virtual Machine - A Users Guide and Tutorial for Network Parallel
Computing, 1994. MIT Press.

5. V. Gil-Costa, M. Marin, and N. Reyes. Parallel query processing on distributed
clustering indexes. Journal of Discrete Algorithms (Elsevier), 7:3–17, 2009.

6. C. Gomez and M. Marin. Load balancing query ranking on distributed inverted
files. In 16th Euromicro International Conference on Parallel, Distributed and
Network-based Processing (PDP 2008), IEEE-CS Press, pages 329–333, Toulouse,
France, Feb. 13-15, 2008.

7. K. Jensen. Colored petri nets: Basic concepts, analysis methods and practical use.
Springer Volume 1, New York, 1992.

8. K. Jensen. Colored petri nets: Basic concepts, analysis methods and practical use.
Springer Volume 2, New York, 1995.

9. Z. B. Jiang. Petri Nets with changeable structure for modeling and adaptive control
of one-of-a-kind production systems. Ph.D. thesis, City University of Hong Kong,
1999.

10. C. Lucchese, S. Orlando, R. Perego, and F. Silvestri. Mining query logs to optimize
index partitioning in parallel web search engines. In In Proceedings of Infoscale
Suzhou, China, June 06 - 08, 2007.

11. M. Marin, C. Bonacic, G. Costa, and C. Gomez. A search engine accepting on-
line updates. In 13th European International Conference on Parallel Processing
(Euro-Par 2007), 4641:340–349, Rennes, France, Aug. 28-31, 2007.

12. M. Marin and V. Gil-Costa. (sync-async)+ mpi search engines. EuroPVMMPI
(Lecture Notes in Computer Science, Springer-Verlag), 2007, Paris, France, Oct.
2007.

13. M. Marin, C. Gomez, S. Gonzalez, and G. Costa. Scheduling intersection queries
in term partitioned inverted files. In 14th European International Conference on
Parallel Processing (Euro-Par 2008), 5168:434–443, Gran Canaria, Aug. 26-29,
Spain, 2008.

14. A. Moffat, W. Webber, and J. Zobel. Load balancing for term-distributed parallel
retrieval. Proceedings of the 29th annual international ACM SIGIR conference on
Research and development in information retrieval, pages 348–355, 2006.

15. A. Moffat and J. Zobel. What does it mean to measure performance? Proc. 5th Int.
Conf. on Web Informations Systems,LNCS 3306,Springer, pages 1–12, Brisbane,
Australia,2004.

16. W. Moffat, J. Webber, Zobel, and R. Baeza-Yates. A pipelined architecture for
distributed text query evaluation. In Proceedings of the 29th annual international
ACM SIGIR conference on Research and development in information retrieval,
pages 348–355, September 2005.

17. M. Persin, J. Zobel, and R. Sacks-Davis. Filtered document retrieval with
frequency-sorted indexes. Journal of the American Society for Information Sci-
ence, 47(10):749–764, 1996.

18. C. Petri. Kommunikation mit automaten. In Technical report, Doctoral Thesis,
University of Bonn. Available in English as: Communication with automata, Tech-
nical Report RADC-TR-65-377, Rome Air Development Center, Griffiss NY, 1966,
1962.

19. B. Ribeiro-Neto, J. Kitajima, G. Navarro, C. Santana, and N. Ziviani. Parallel
generation of inverted lists for distributed text collections. In XVIII Conference of
the Chilean Computer Science Society, pages 149–157. (IEEE CS Press), 1998.

20. M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI: The
complete Reference, 1996.

21. L. Valiant. A bridging model for parallel computation. Comm. ACM, 33:103–111,
Aug. 1990.

22. W. M. P. van der Aalst. Interval timed coloured petri nets and their analysis. In
Application and Theory of Petri Nets, pages 453–472, 1993.

23. I. H. Witten, A. Moffat, and T. Bell. Managing gigabytes: Compressing and index-
ing documents and images. 2nd ed. San Francisco, Morgan Kaufmann, 1999.

24. W. Xi, O. Sornil, M. Luo, and E. A. Fox. Hybrid partition inverted files: Experi-
mental validation. In ECDL ’02: Proceedings of the 6th European Conference on
Research and Advanced Technology for Digital Libraries, pages 422–431, London,
UK 2002.

25. J. Zhang and T. Suel. Optimized inverted list assignment in distributed search
engine architectures. In IPDPS, 2007.

