
A Constraint Optimization based Scheduler for

Distributed Computing Work�ows

David Monge1,3, Carlos García Garino1,2

1 Instituto para las Tecnologías de la Información y las Comunicaciones (ITIC),
UNCuyo

2 Facultad de Ingeniería, UNCuyo
3 Fellow CONICET

{dmonge, cgarcia}@itu.uncu.edu.ar

Abstract In this work, the scheduling of distributed computing work-
�ows is discussed. In practice there are problems like Datamining ap-
plications were rather complex work�ows are found. The mapping of
work�ows on the available resources has to satisfy matchmaking of job
requirements and resources capacities. On the other hand job depen-
dencies exists due to work�ow characteristics. Then di�erent constraints
must be accomplished and Constraint Satisfaction Problems (CSP) is a
good candidate in order to obtain the feasible set of solutions. In this
case, Backtracking and Branch and Bound algorithms are considered.
After the CSP problem is de�ned, the best solution or a close enough
approximate one, have to be obtained. In this work the cost function is
written in terms of work�ow total execution time. From the validation
experiments tried can be said that good quality solutions can be found.
Moreover, approximate case, but saving important computational e�ort
in order to �nd the solution.

1 Introduction

Distributed Computing techniques have been used very often in the last years in
order to solve di�erent applications. In some cases High Performance Computing
[1,2] require large amount of computing facilities. Other applications are based
in a rather complex work�ow [3] of applications like Datamining for instance
[4]. Finally Grid Computing [5,6] promises to provide required resources in a
transparent way to users.

In order to deploy a distributed computing infrastructure di�erent issues
must to be addressed in practice, for instance resources have to be discovered
and the scheduling of job resources have to be done.

In this work di�erent techniques are discussed in order to optimize the work-
�ow mapping to available resources.

Work�ow scheduling is a rather complex problem. First a matchmaking be-
tween jobs and resources have to be executed. After matchmaking di�erent pos-
sible assignments can be made in practice.

There are di�erent restrictions to be accomplished like job dependencies, pro-
cessing requirements, software disponibility, among other issues. Consequently to

�nd a proper assignment of jobs to resources belong the Constraint Optimization
Techniques.

In this paper Constraint Satisfaction Problem is used to approach work�ow
scheduling. In this way a modi�ed backtracking algorithm is proposed.

In section 2 some background is provided. Work�ow, Work�ow Scheduling
and CSP are addressed in subsections 2.1, 2.2 and 2.3 respectively. In section 3
Distributed Computing Work�ow Optimization is studied and the algorithm is
discussed.

Validation experiments are performed and its results are accounted in section
4. Finally Conclusions are provided in section 5.

2 Background

2.1 Work�ow

Work�ow can be de�ned as the �ow of jobs and data required in order to execute
an application. A work�ow can be considered as an abstraction of an actual job
with a well de�ned set of tasks and their dependencies. A work�ow can be
represented as a DAG (Directed Acyclic Graph) or a non-DAG. In �gure 1 can
be seen a DAG Work�ow example.

According to Yu and Buyya [3] a DAG-based work�ow structure can be
classi�ed as model sequence, parallelism and choice. First case is typical of serial
applications, parallelism accounts for tasks that can be processed concurrently
and choice let some options to be selected at run-time. A non-DAG work�ow
additionally includes iteration structure. In this sense one or more tasks are
allowed to be repeated. Scienti�c applications often uses this kind of structures
also known as loop or cycles.

An application work�ow is a particular type of work�ow where all the jobs
are applications. For this kind of work�ows tasks dependencies come from I/O
data jobs relationships.

Figure 1. DAG work�ow example.

2.2 Work�ow Scheduling

Work�ow scheduling can be considered as a kind of global job scheduling because
it is focused on mapping and managing the execution of interdependent jobs on
shared resources that are not directly under its control [3].

In practice the applications that compose the work�ow have di�erent requi-
sites respect to the available resources. In order to state jobs requirements are
usually taken into account: operating system, RAM memory, processor type,
hard disk capacity, libraries and software availability, etc.

The goal of Work�ow scheduling is to assign resources to applications and to
de�ne the proper execution instant as well. In �gure 2 a simple example can be
observed.

In general a single best solution for mapping work�ows onto resources for
di�erent applications is rather di�cult to be found. Then a decision making
process must to be followed in order to schedule the work�ow. An overview of
the problem is described by Yu and Buyya [3] and references therein.

Figure 2. Scheduling example.

2.3 Constraint Satisfaction Problems

In Constraint Satisfaction Problems (CSP) [7] a set of values have to be assigned
to the problem's variables in order to satisfy the constrain set. Formally a CSP
can be de�ned in terms of the P (X, D, C) where:

� X = {x1, x2, . . . , xn} is the set of problem's variables.
� D = {D1, D2, . . . , Dn} is the domain value for each one of the variables.
� C is the constraint set imposed to the variables of the problem.

The backtracking family of algorithms [8,9] are used in practice to solve CSP
problems. This kind of algorithms �nd the solution using a search tree. In this
way a value is assigned to each variable for each node of the tree. There are
several improvements available in the literature for the basic algorithms. Two of
them are the MRV heuristic [10,7] and the FC method [11,7]. This two techniques
are used joined to detect constraints inconsistencies earlier.

Minimum Remaining Values Heuristic (MRV) This heuristic looks to improve
the execution time taking advantage of the selecting order of the problem's vari-
ables. The idea is to choose �rst the variables that have small domain value sets.
Then quick search for inconsistency situations is performed for partial assign-
ments. More details can be found in [10,7].

Forward Checking (FC) It is a method used to propagate information between
the CSP constraints. When a variable X is assigned, the process takes every
unassigned variable Y that is connected to X by a constraint and deletes all the
values from the X´s domain that are inconsistent with the assigned value of X.
More details can be found in [11,7].

In many real-life situations it is convenient to �nd the best solution of the
admissible set. The quality of solution is usually measured by a function called
Optimization or cost function.

The goal is to �nd the solution that satis�es all the constraints and minimize
or maximize the optimization function respectively. Such problems are referred
to as Constraint Satisfaction and Optimization Problems (CSOP) [12].

A CSOP consists of a standard CSP and an optimization function that maps
every solution to a numerical value.

The most widely used algorithm for �nding optimal solutions is called Branch
and Bound (B&B) [13,12]. For further reading can be seen [14,15].

3 Distributed Computing Work�ow Optimization

The di�erent jobs that compose the work�ow must be assigned to the available
resources to execute them. Moreover constraints that come from hardware re-
quirements have to be satis�ed and work�ow dependencies between jobs must to
be accomplished. The problem can be encompassed in a Constrain Satisfaction
Problem and the optimal solution has to be found among the di�erent possible
ones.

The objective of this paper is to propose a scheme that provides the op-
timal assignment of the jobs on the available resources satisfying the existing
constraints. This optimal is the minimum execution time for the complete work-
�ow. The number of admissible combinations growth in an exponential way with
the quantity of jobs that compose the work�ow. Consequently the problem can
be considered as NP-Complete one.

The tool discussed in this work can be encompassed in the context of work�ow
scheduling problems. In this case some simpli�cations are assumed respect to job
execution times and data transfer rates as well.

The architecture of the proposed scheme can be observed in �gure 3 where
the two main modules can be recognized: matchmaking and scheduling, that are
organized in an uncoupled way. Matchmaking compares job execution require-
ments with available hardware resources. In this way if a particular job can not
be executed the complete work�ow is prevented to be processed. Then work�ow

scheduling has not merit in this scene. Matchmaking step can be obtained from
middleware like Condor[16] or any other appropriate ad-hoc matchmaker.

After matchmaking takes place a list of available resources that satisfy exe-
cution requirements is provided for each job. This so called matches list together
a proper performance data and work�ow dependencies are used as input data
for the scheduling module.

Figure 3. Process Overview.

The scheduler's diagram can be seen in �gure 4, where the di�erent compo-
nents can be observed as well as their interactions.

At �rst place, variable, domain and constraint generators modules are ex-
ecuted. These modules uses as input data: i) Matching list between jobs and
resources provided for matchmaking module; ii) Work�ow dependencies descrip-
tion; iii) Performance data to be considered.

PERT (Program Evaluation and Review Technique) is a model developed by
the US Army in the �fties. In this paper the application jobs of a work�ow are
modeled using PERT in order to measure the cost of the di�erent mappings of
the work�ow over the resources. An example can be seen on �gure 5. It represents
a simple work�ow of 6 tasks. Arcs represent tasks and nodes represent events
(the beginning and the end of tasks). PERT plays a very important role in order
to solve the CSP problem.

A CSP de�nition of the problem is obtained once the information provided
by generator modules and PERT diagram is obtained from the work�ow.

From the CSP de�nition and Cost performance model the optimizer module
is executed in order to �nd the optimal solution. Backtracking and Branch and
Bound algorithms are used in this case.

Figure 4. Scheduler Diagram.

Figure 5. PERT example.

3.1 Work�ow Scheduling Problem Modeling

In order to obtain the mapping of the work�ow onto the available resources the
scheduling problem can be stated as an optimization problem. In this case the
optimization or cost function is the total execution time of the problem.

According the ideas discussed in subsection 2.3 this problem can be modeled
like a CSP:

� The set of variables is splitted in two di�erent subsets. The variables xji
, 1 ≤

i ≤ n denote work�ow jobs and are called job variables. The variables
xri , 1 ≤ i ≤ m belong to dependency relationships that could follow from
graph independent jobs. These variables are called dependency relationship
variables, and are denoted as jobVariableX>�>jobVariableY.

� The domain of job variables are the resources (computers in this case) where
jobs can be processed. The relationship variables domain take the values: be-
fore, after o independence. For instance jobVariable1>�>jobVariable2 points
out that job 2 depends on job 1 when the value is before. For an after value
job 2 depends on job 1 and independence means that both works can be
processed independently.

� There are three di�erent kinds of constraints:

• PertCyclesConstraint : this kind of restrictions control that no loops be
created when new dependencies relationships are generated.

• PertCostConstraint is a soft constraint used to compute the partial or
total execution time or cost problem.

• JobOverlapConstraint is a restriction that avoids overlapping time of in-
dependent jobs assigned to the same resource. In practice is computed
as: job1+ < job2− ∨ job2+ < job1−. Where job− and job+ denote time
beginning and �nalization jobs respectively, according to Qualitative In-
terval Constraints [17].

3.2 Performance Model

In order to measure the cost of solutions it is necessary to estimate the hardware
performance. In the literature di�erent approaches has been suggested and an
overview of the subject can be found in [3]. In this work a simple Performance
Model is used in order to estimate processing capacity and data transfer as well.

Execution Time The execution times are estimated for a given job in terms of
processing capacity of resources per unit time and jobs processing requirements
as can be seen in equation 1.

Tex(jobX) = processingRequirementjobX/processingCapacitymachineX (1)

Where processingRequirementjobX denotes the processing requirement of
jobX measured in a proper unit (MIPS for instance) and the processing capacity
of the assigned resource to jobX is denoted as processingCapacitymachineX .

Transfer Time Transfer time are estimated in terms of message size and trans-
fer rate in between the di�erent resources assigned to the jobs as can be seen in
equation 2.

Ttx(jobA, jobB) = messagejobA/transferRatemachineA,machineB (2)

Where messagejobA is the size of the message to be transmitted (jobA output
data) and transferRatemachineA,machineB is the transfer rate between comput-
ers where jobs A and B are assigned respectively.

3.3 Optimizer

The proposed optimization algorithm is a version of Backtracking [8,7,9] al-
gorithm combined with Branch & Bound [13,12]. This algorithm searches all
possible solutions of the CSP and returns the best one according to the opti-
mization function. This recursive algorithm is a deep-�rst search that assigns a
value to each one of the di�erent variables of the problem. It backtracks when

all values have been tried for a variable and when the estimated solution cost of
an assignment exceeds the cost of the best solution found at he moment.

In algorithm 1 can be seen the pseudocode of the optimization algorithm.
The algorithm is invoked with an empty assignment (none of its variables has a
value).

It starts checking if the assignment passed as parameter is complete (one
in which all the variables have a value), in this case a solution was found and
it is returned to the previous recursive steps of the algorithm (lines 5 and 6).
If the assignment is not a solution, the algorithm selects a variable to assign
(selectUnassignedVariable function on line 7). This is repeated on each recursive
step. Then a domain value is selected to trial as new assignment. In most cases
particular domain orderings conduces the algorithm to �nd solutions faster. The
orderDomain function on line 8 must be implemented for this issue. In this
version of the algorithm the default domain order is kept.

Once a variable and a value have been selected, the Forward Checking method
is invoked (line 9) and the PERT is updated with the new assignment (line 10).
Then, constraints must be checked in order to look for assignment inconsistencies
(line 11). If all constraints are satis�ed, the cost of the assignment must be
computed (line 12). If the cost is lower than the minimum solution cost found
at the moment (line 13), the assignment becomes e�ective (line 14). Then a new
recursive step is initiated with the new assignment (line 15). The return value
of each recursive invocation (each recursive step) may be a solution or a null
value. i) If the result is a solution, it is kept (line 17) and its cost as well (line
18). After that, the last variable assignment is removed (line 19) for continue
searching solutions. ii) If the result is a null value the algorithm removes the
last variable assignment (line 19) this is made in order to perform a backtrack.

Once that all the values of a variable have been tried a null value is returned
indicating that a backtrack must be performed (line 20).

Each new variable assignment generates a new work�ow mapping over the
resources with potential new dependency relationships. For each new mapping,
cost constraint must be evaluated.

Algorithm 1 Scheduler Backtracking-Branch&Bound algorithm.

1 backtrack ing (ass ignment) r e tu rn s an ass igment
2 g l oba l c on s t r a i n t s //CSP con s t r a i n t s
3 g l oba l so lut ionAss ignment = null // s o l u t i o n
4 g l oba l minimumCost = INFINITY // s o l u t i o n co s t
5 i f (ass ignment . isComplete ())
6 return ass ignment //a s o l u t i o n was found
7 va r i ab l e = se l e c tUnas s i gnedVar i ab l e (ass ignment) //MRV
8 for (va lue : orderDomain (va r i ab l e))
9 checkFoward (assignment , va r i ab l e , va lue) //FC
10 updatePert (assignment , va r i ab l e , va lue)
11 i f (c on s t r a i n t s . a r e S a t i s f i e d (assignment , va r i ab l e , va lue))
12 co s t = con s t r a i n t s . c o s t () // f o r B&B
13 i f (co s t < minimumCost)
14 ass ignment . s e t (va r i ab l e , va lue)
15 assignment2 = backtrack ing (ass ignment)
16 i f (ass ignment2 != null)
17 so lut ionAss ignment = assignment2
18 minimumCost = cos t
19 ass ignment . remove (v a r i ab l e)
20 return null // a l l v a l u e s t r i e d , must back t rack

1 s e l e c tUnas s i gnedVar i ab l e (ass ignment) r e tu rn s a va r i ab l e
2 . . . // implementat ion o f MRV h e u r i s t i c

1 orderDomain (va r i ab l e) r e tu rn s an ordered l i s t o f va lue s
2 . . . //not implemented , the d e f a u l t order o f domain i s keeped

The optimization function is computed as the cost of CostConstraint. This
function is invoked for each new assignment during the execution of the back-
tracking algorithm. In this way the algorithm can discard search-subtrees that
exceeds in cost the best solution found. This step is known as pruning. The al-
gorithm requires a proper heuristic function in order to have an estimation of
the solution cost from incomplete assignments.

The optimizer founds an optimal or an approximated solution depending on
the heuristic function used for performance estimation of work�ow mappings.

In order to guarantee the algorithm's optimality such heuristic must be ad-
missible, this is, an heuristic that don't overestimates the cost of the best solu-
tion. The use of non admissible heuristics (those that could overestimates the
real cost of the best solution) leads us to an approximation problem.

3.4 Optimization Problem

The optimization function is calculated as f = PertCostConstraint.cost, this
is the execution time for the complete work�ow. This calculation is made by the
evaluation of the PERT de�nition.

PERT is evaluated according the following rules:

� Execution time of a job depends on the machine on where is executed. This
information is retrieved by the Performance Model. This could be seen on
section 3.2.

� Transfer time of a message between two jobs depends on the message size
and the transference rate between this two machines. This information is
also retrieved by the Performance Model. As can be seen on subsection 3.2.

� Start time of a job B is the maximum ending time of its predecessor jobs.
The ending time of a job A is calculated as: start time of A plus execution
time of A plus transfer time of the output of A (message) from machine A
to machine B. If a job has no predecessors, its start time is 0.

� The total cost of PERT is the maximum ending time of the �nal jobs of the
work�ow. A �nal job has no successors.

The admissible heuristic function consists on:

� Suppose that a non assigned job to a resource is executed on a machine
with the maximum processing capacity. This estimation is the exact when
there is only one possible machine for that job or all machines have the same
processing capacity, like usually is the case of Beowulf Clusters in practice.

� Suppose that a data transfer between two jobs, in which at least one of them
has no machine assigned, has the same cost as the two tasks were on the
same machine (a local transfer).

3.5 Approximation Problem

In optimization problems the full solution space has to be searched in order to
�nd the best one. Usually this task has a very high cost in terms of computational
e�ort of is unacceptable in some cases. Then an approximation problem can be
solved with a cost function close enough to the optimal one. The idea is to
�nd an approximate solution for the work�ow mapping provided approximation
error is bounded. In this case near optimal work�ow mapping can be computed
with a considerably less computational e�ort than the optimization problem.
In order to obtain an approximation problem from the optimization one a non
admissible heuristic is chosen in order to estimate the solution cost for incomplete
assignments. This kind of heuristic usually overestimate the solution cost respect
the optimal one.

The proposed non admissible heuristic is based on the following ideas:

� Unassigned jobs are processed on average capacity resources. It is immediate
to see that this heuristic is exact for some particular cases: there is only
one possible machine for that job or all machines have the same processing
capacity.

� It is assumed that messages between two jobs are transmitted with average
transfer rate when at least one of the jobs have not a resource assigned.

4 Experiments

In order to test the proposed algorithm, di�erent problems are solved. Architec-
tures like Supercomputers, Beowulf Clusters and Condor Pools are considered.
On this infrastructures a simple work�ow is mapped.

4.1 Work�ow

A simple work�ow shown in �gure 6, is chosen. Di�erent problems denoted Com-
puting Intensive and Data Intensive are de�ned. In the �rst case, high perfor-
mance capacity is desirable and for the second case a good data transfer rate is
a requisite.

Figure 6. Eight-Jobs work�ow.

Processing requisites and output sizes can be seen in tables 1 and 2 for
Computing Intensive and Data Intensive simulations, respectively. Processing
requirements are measured in processing units and output sizes are measured in
Mib.

Table 1. Eight-Jobs Data Intensive problem con�guration.

Job A B C D E F G H

processingRequirement 5,0e+5 4,0e+5 7,0e+5 1,0e+5 2,0e+5 1,0e+5 3,0e+5 2,0e+5

Output size (message) 1,0e+3 2,5e+3 2,0e+3 1,5e+3 3,0e+3 1,7e+3 2,3e+3 0

Table 2. Eight-Jobs Computing Intensive problem con�guration.

Job A B C D E F G H

processingRequirement 5,0e+6 4,0e+6 7,0e+6 1,0e+6 2,0e+6 1,0e+6 3,0e+6 2,0e+6

Output size (message) 100 19 77 120 91 60 149 0

4.2 Hardware Infrastructure

In this subsection processing capacity and transfer rate is discussed for the dif-
ferent architectures considered.

Supercomputer This type of architecture is often used in high performance
computing in order to solve Bioinformatics applications, Weather simulation,
Computational Fluid Dynamics, etc.

In this case four processor are considered with a processingCapacity = 500
(processing units / second) for all of them. In order to de�ne data transfer rate,
di�erent works running on the same processor and di�erent processors cases
must be accounted, as can be seen in table 3.

Table 3. Supercomputer transfer rates in Mib/s.

Case transferRateX,Y

X 6= Y 10000

X = Y 200000

Beowulf Cluster In this case an homogeneous cluster is de�ned with four
nodes with a processingCapacity = 100 (processing units / second) each one.
Transfer rate between jobs processed in di�erent nodes and in the same node
can be seen in table 4.

Table 4. Beowulf Cluster transfer rates in Mib/s.

Case transferRateX,Y

X 6= Y 1000

X = Y 10000

Transfer rate in this case is considered like a Gigabit Ethernet infrastructure
and is lower than data transfer performance of supercomputer.

Condor Pool In this case partially available resources linked through a Fast
Ethernet network with data transferRate = 100 are considered. For two jobs

processed on the same machine transferRate = 10000, like the Beowulf Cluster,
are selected. Both transfer rates are measured in Mib/s.

In this case the four nodes in the pool have di�erent processing capacity
(processing units / second) as can be seen in table 5.

Table 5. Condor Pool processing capacities in processing units / second.

Machine 1 2 3 4

processingCapacity 70 100 95 97

4.3 Discussion of Results

Optimal Solutions On table 6 can be seen results of the optimization prob-
lems. Column SCO denotes the cost of optimal solution; V AO denotes the num-
ber of variable assignments required to �nd the solution, this is the number of
times that a value was selected for a variable; TO show the execution time (in
milliseconds) of the scheduler required in order to �nd the solution .

Table 6. Results for Optimization Problem.

Problem SCO V AO TO

Data Intensive, Supercomputer 3300.6 132573 10317

Computing Intensive, Supercomputer 33000.0 84297 6049

Data Intensive, Cluster 17003.1 132429 9513

Computing Intensive, Cluster 170000.1 85545 6114

Data Intensive, Condor Pool 18130.8 25260 2771

Computing Intensive, Condor Pool 180930.5 25260 2822

From table 6 can be seen that: as the number of generated assignments
increase, the computation time of the algorithm increases as well. It is more
di�cult for the algorithm to �nd solutions when the architecture is homogeneous.
This is because there are many solutions that have equivalent costs, and the
algorithm checks all of them. An special treatment must be taken in account for
this type of architectures.

Also can be mentioned that the solution costs of Data Intensive and Com-
puting Intensive problems are similar but with one more magnitude order for the
second one. This is because the processing requirements of the jobs in the Com-
puting Intensive problem has one more magnitude order than the requirements
of the Data Intensive problem.

For the Condor Pool case a much smaller number of variable assignments were
necessary. This is because in heterogeneous architecture the algorithm can dis-
card partial solutions earlier for suboptimal variable assignments. Consequently
the solution can be found more easily than in the previous cases.

Approximate Solutions Table 7 show results of the approximation problems.
Column SCA show the cost of approximate solution; V AA is the number of
variable assignments required to �nd the approximate solution; TA show the ex-
ecution time (in milliseconds) of the scheduler to �nd the approximate solution.

Table 7. Results for Approximation Problem.

Problem SCA V AA TA

Data Intensive, Supercomputer 3400.3 9978 1262

Computing Intensive, Supercomputer 34000.0 9811 832

Data Intensive, Cluster 17000.5 9978 769

Computing Intensive, Cluster 170000.0 9811 730

Data Intensive, Condor Pool 17350.5 1507 193

Computing Intensive, Condor Pool 173500.0 1507 217

A di�erent behaviour can be seen respect to the optimization problem cases.
For the approximation problem the variable assignments produced by the al-
gorithm are very similar, except on Condor Pool architecture mappings. That
continue making a much smaller number of variable assignments on that archi-
tecture type than the others.

Comparison of results for optimal and approximate solutions The com-
parative results of approximation and optimization problems can be seen on table
8. Column SCErr = 100% ∗ |SCO − SCA| /SCO show relative error between so-
lution costs of optimization and approximation problems. Column V AO/V AA

show ratios of the number of variable assignments between optimal and approx-
imate solutions. Column TO/TA show scheduling time ratios between optimal
and approximate solutions.

Table 8. Comparison results.

Problem SCErr V AO/V AA TO/TA

Data Intensive, Supercomputer 0.01% 13.29 8.,18

Computing Intensive, Supercomputer 0.00% 8.59 7.27

Data Intensive, Cluster 0.02% 13.27 12.37

Computing Intensive, Cluster 0.00% 8.72 8.38

Data Intensive, Condor Pool 4.50% 16.76 14.36

Computing Intensive, Condor Pool 4.28% 16.76 13.00

Column TO/TA in table 8 show that execution times of the algorithm reduces
signi�cantly. About 7 times in worst case and 14 times in best case. A more pre-
cise measurement is the comparison between variable assignments (V AO/V AA),

because only involves the characteristics of the algorithm execution and do not
have into account issues related to the Operating System, I/O's, another running
processes, etc. This metric show that in the approximation problems a reduction
of the assignments is about 16 times in best case and 8 times in worst case.
For the cases in which V AO/V AA = 16.76 a 1 − 1/16.76 = 94.03% of the as-
signments made in optimization problem were not made on the approximation
approach. That is why the relative error range a 4%. Also can be seen that Data
intensive problems on Supercomputer and Cluster architectures have the best
relation (ratio) between approximation of optimal solution and algorithm exe-
cution time. This is because in homogeneous architectures the execution times
of the jobs are known a priori without knowing the speci�c machine in which
the job will be executed. In this way the execution times estimation made by
the heuristics is exact.

5 Concluding Remarks

� In order to validate the proposed algorithm some experiments have been car-
ried out . A work�ow has been processed on di�erent (simulated) distributed
computing architectures: Supercomputer, Beowulf Cluster and Condor Pool.

� The algorithm have found optimal solution for all the architectures tested.
However some di�culties were found for homogeneous resources like Super-
computers and Cluster instead of a good behaviour obtained for the Condor
Pool.

� In general approximate solutions have very good quality and have been ob-
tained with fairly less computational e�ort, than the optimal case.

� From the obtained results can be said that the design of proper heuristics is
a central point in order to obtain a good at a reasonable execution time for
the work�ow scheduling.

� It appears to be important to design a new heuristic for homogeneous case.
Some improvements for the algorithms can be studied as well. The idea is to
implement ordering of domain values. On the other hand Arc Consistency
can be studied instead of Forward Checking.

References

1. Jack Dongarra, Ian Foster, Geo�rey Fox, William Gropp, Ken Kennedy, Linda
Torczon, and Andy White, editors. Sourcebook of parallel computing. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2003.

2. Joseph Sloan. High Performance Linux Clusters with OSCAR, Rocks, OpenMosix,
and MPI (Nutshell Handbooks). O'Reilly Media, Inc., November 2004.

3. Jia Yu and Rajkumar Buyya. A taxonomy of work�ow management systems for
grid computing, Apr 2005.

4. Vlado Stankovski, Martin Swain, Valentin Kravtsov, Thomas Niessen, Dennis We-
gener, Jörg Kindermann, and Werner Dubitzky. Grid-enabling data mining appli-
cations with datamininggrid: An architectural perspective. Future Gener. Comput.
Syst., 24(4):259�279, 2008.

5. Abbas A. Grid Computing: A practical Guide to Technology and Applications.
Charles River Media, 2003.

6. Foster I. and Kesselman C. (eds.). The Grid: Blueprint for a New Computing
Infrastructure. Morgan Kaufmann, 1999.

7. Stuart Russell and Peter Norvig. Arti�cial Intelligence: A Modern Approach (2nd
Edition). Prentice-Hall, 2002.

8. James R. Bitner and Edward M. Reingold. Backtrack programming techniques.
Commun. ACM, 18(11):651�656, 1975.

9. Gilles Brassard and Paul Bratley. Fundamentals of Algorithmics. Prentice-Hall,
1995.

10. Fahiem Bacchus and Paul van Run. Dynamic variable ordering in csps. In CP
'95: Proceedings of the First International Conference on Principles and Practice
of Constraint Programming, pages 258�275, London, UK, 1995. Springer-Verlag.

11. Fahiem Bacchus and Adam J. Grove. On the forward checking algorithm. In CP
'95: Proceedings of the First International Conference on Principles and Practice
of Constraint Programming, pages 292�308, London, UK, 1995. Springer-Verlag.

12. Roman Bartak. Constraint programming: In pursuit of the holy grail. In in Pro-
ceedings of WDS99 (invited lecture, pages 555�564, 1999.

13. E. L. Lawler and D. E. Wood. Branch-and-bound methods: A survey. Operations
Research, 14(4):699�719, 1966.

14. Adrian Petcu and Boi Faltings. A scalable method for multiagent constraint opti-
mization. In Proceedings of the International Joint Conference on Arti�cial Intel-
ligence, pages 266�271, Edinburgh, Scotland, August 2005.

15. Adrian Petcu and Boi Faltings. ODPOP: An algorithm for open/distributed con-
straint optimization. In Proceedings of the National Conference on Arti�cial Intel-
ligence, AAAI-06, pages 703�708, Boston, USA, July 2006.

16. Condor: www.cs.wisc.edu/condor/.
17. Eddie Schwalb and Lluís Vila. Temporal constraints: A survey. Constraints,

3(2/3):129�149, 1998.

